
Quantum Information Processing           (2023) 22:81 
https://doi.org/10.1007/s11128-023-03827-3

Entropy production of quantumMarkov semigroup
associated with open quantumwalks on the periodic
graphs

Chul Ki Ko1 · Hyun Jae Yoo2

Received: 26 September 2022 / Accepted: 2 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we compute the entropy production of quantum Markov semigroup
associated with open quantum walks. The entropy production, for the classical as
well as quantum systems, measures the deviation from the symmetry between the
forward and backward processes. The detailed balance condition with respect to an
invariant state is the condition for the symmetry of the dynamics. Here we consider
the quantumMarkov semigroups associated with open quantum walks on the periodic
graphs. On the one hand, the model serves as a good example to study the quantum
detailed balance condition and the entropy production. On the other hand, from the
viewpoint of the dynamics itself, the concept of entropy production helps for a better
understanding of the dynamics.

Keywords Entropy production · Quantum detailed balance condition · Open
quantum walks
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1 Introduction

In this paper we, discuss the entropy production for a quantum Markov semigroup
with a stationary state associated with open quantum walks on the periodic graphs.
The aim is twofold: one is to find an interesting model to explain the concept of
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quantum entropy production. The other one is to show that the concept of entropy
production is a good tool for a better understanding of the dynamics.

For the classical interacting particle systems [19], among others, in a series of
papers Maes et al. developed the concept of entropy production [22–24, and ref-
erences therein]. There the authors compare the steady state with the state of the
time-reversed process. The relative entropy resulting from this comparison defines the
entropy production. The Gibbsian formalism under consideration and the Gibbs mea-
sures as steady states define not only the dynamics itself but also the detailed balance
condition via the interaction potentials.

Analogous to the theory applied to classical Markov semigroups for interacting
particle systems, Fagnola and Rebolledo introduced a definition of entropy production
rate for faithful normal invariant states of quantumMarkov semigroups [8–10]. In [9],
the entropy production is defined as the relative entropy of the one-step forward and
backward two-point states (see Sect. 3 for the details). The entropy production for
quantum Markov semigroups, as for the classical stochastic processes, measures a
deviation from detailed balance (see [9, and references therein]). The computation of
entropy production for QMS in some models can be found for instance in [5, 9, 10].

The symmetric Markov semigroup plays a central role in the classical stochastic
dynamical systems [14, 21] providing a deep connection of analytic and probabilistic
methods in the study of the dynamics. When the Markov semigroup has an invariant
state (a probabilitymeasure), the detailed balance condition gives a sufficient condition
for the symmetry [19]. The extension of the concept of symmetry and detailed balance
condition to the quantum dynamical systems have been established in several ways by
many authors (see for example [1–4, 6, 11–13, 15, 18, 26, 27] and references therein).
In this paper, we follow the definitions developed by Fagnola and Umanita in [11–13].
In particular, they characterized the KMS symmetry and quantum detailed balance
conditions by the Gorini–Kossakowski–Sudarshan [16] and Lindblad [20] (GKSL)
generators (see Sect. 2 for the details).

In this paper, we will concretely compute the entropy production for the quantum
Markov semigroups associated with open quantum walks with periodic boundary
conditions. Particularly we will consider the model on the cycle and torus from the
regular integer lattices and also the model on the crystal torus (Sects. 4 and 5). We also
investigate the relationship between no-existence of entropy production and quantum
detailed balance condition (Sect. 6).

The paper is organized as follows. In Sect. 2 we introduce the GKSL generators for
the quantum Markov semigroups and then the KMS symmetry and quantum detailed
balance conditions. In Sect. 3, we briefly review the entropy production formula for
quantum Markov semigroups following [8–10]. In the following Sects. 4 and 5, we
compute the entropy productions in our model. In the final Sect. 6, we discuss the rela-
tionship between the quantum detailed balance condition and no-existence of entropy
production in the considered model.
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2 QuantumMarkov semigroups, detailed balance condition and KMS
symmetry

In this paper we consider the norm continuous quantum Markov semigroups (QMSs
in the sequel) on the von Neumann algebraA = B(h), the space of all bounded linear
operators on the separable Hilbert spaces h. Particularly, the Hilbert spaces will be
of finite dimensional in the examples. It is well known that the generators of norm
continuous QMSs have GKSL representations [7, 16, 20]. Still further, as introduced
in [9, Theorem 1], we will consider the special GKSL representation [28] which is
coded in the following theorem.

Theorem 2.1 Let L be the generator of a norm continuous QMS on B(h) and let ρ be
a normal state on B(h). There exists a bounded self-adjoint operator H and a finite
or infinite sequence (Ll)l≥1 of elements of B(h) such that

(i) tr(ρLl) = 0 for all l ≥ 1,
(ii)

∑
l≥1 L

∗
l Ll is a strongly convergent sum,

(iii) if (cl)l≥0 is a square summable sequence of complex scalars and c01l+∑
l≥1 cl Ll =

0 then cl = 0 for all l ≥ 0,
(iv) the following representation of L holds

L(x) = i[H , x] − 1

2

∑

l≥1

(
L∗
l Ll x − 2L∗

l x Ll + xL∗
l Ll

)
.

If H ′, (L ′
l)l≥1 is another family of bounded operators in B(h) with H ′ self-adjoint

and the sequence (L ′
l)l≥1 is finite or infinite then the conditions (i)–(iv) are fulfilled

with H, (Ll)l≥1 replaced by H ′, (L ′
l)l≥1, respectively, if and only if the lengths of the

sequences (Ll)l≥1, (L ′
l)l≥1 are equal and for some scalar c ∈ R and a unitary matrix

(ul j )l, j we have

H ′ = H + c, L ′
l =

∑

j

ul j L j . (2.1)

Let T = (Tt )t≥0 be a QMS on A = B(h) with a faithful normal invariant state
ω with a density matrix ρ. Let (σt )t∈R be the corresponding modular automorphism:
σt (x) = ρi t xρ−i t , x ∈ A. The dual semigroup of T is a semigroup T ′ that satisfies
the relation

ω(σi/2(a)Tt (b)) = ω(σi/2(T ′
t (a))b), a, b ∈ A, t ≥ 0, (2.2)

or equivalently,
tr
(
ρ1/2aρ1/2Tt (b)

) = tr
(
ρ1/2T ′

t (a)ρ1/2b
)
. (2.3)

One can show that T ′ is given by [13, Theorem 1]

ρ1/2T ′
t (x)ρ

1/2 = T∗t
(
ρ1/2xρ1/2), (2.4)

where (T∗t )t≥0 is the predual semigroup on A∗, the space of trace class operators on
h. The semigroup T is called KMS-symmetric if its dual T ′ is equal to itself [13, 15].
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In order to discuss the quantum detailed balance (QDB) conditions, we first intro-
duce a reversing operation� [9]; namely,� : A → A is an anti-homomorphic ∗-map
(�(ab) = �(b)�(a) and�(a∗) = �(a)∗ for all a, b ∈ A), and also satisfies�2 = I ,
the identity map on A. In this paper the map � is concretely given by

�(a) = θa∗θ, a ∈ A, (2.5)

where θ : h → h is the conjugation with respect to a fixed orthonormal basis (en)n≥0
of h defined as [9]

θ

⎛

⎝
∑

n≥0

unen

⎞

⎠ =
∑

n≥0

unen . (2.6)

It can be easily shown that the stateωwith a densitymatrix ρ is invariant under themap
�, i.e., ω(x) = ω(�(x)), if and only if θ commutes with ρ, which will be assumed
through the paper. In fact, it is the case, if we take the orthonormal basis (en)n≥0 in
(2.6) the eigenvectors of ρ

Let us introduce the QDB conditions given in [9, 13].

Definition 2.2 Let T be a QMS onAwith a dual QMS T ′ satisfying the relation (2.2),
whose generators are denoted by L and L′, respectively. The semigroup T satisfies:

1. the standard quantum detailed balance condition with respect to the reversing oper-
ation � (SQDB-�) if T ′

t = � ◦ Tt ◦ � for all t ≥ 0,
2. the standard quantum detailed balance condition (SQDB) if the difference of gen-

erators L − L′ is a densely defined derivation.

Here follows some remarks.

Remark 2.3
(i) By definition, if T is KMS-symmetric, i.e., T = T ′, the QMS satisfies SQDB.
(ii) The SQDB-� condition is equivalent to saying that

tr
(
ρ1/2xρ1/2Tt (y)

) = tr
(
ρ1/2Tt (�(x))ρ1/2�(y)

)
, x, y ∈ A, t ≥ 0. (2.7)

In fact, recall that � is anti-homomorphic and idempotent, and satisfies tr(�(x)) =
tr(x). The commutativity of ρ and θ gives the relation �(x)ρ1/2 = �(ρ1/2x). Then,
the r.h.s. of (2.7) can be rewritten as

tr
(
ρ1/2Tt (�(x))ρ1/2�(y)

) = tr
(
�(y)ρ1/2Tt ◦ �(x)ρ1/2)

= tr
(
�(y)ρ1/2�

(
� ◦ Tt ◦ �(x)

)
ρ1/2)

= tr
(
�(ρ1/2y)�

(
ρ1/2� ◦ Tt ◦ �(x)

))

= tr
(
�

(
ρ1/2� ◦ Tt ◦ �(x)ρ1/2y

))

= tr
(
ρ1/2� ◦ Tt ◦ �(x)ρ1/2y

)
.

Therefore, the SQDB-� holds if and only if (2.7) holds. The detailed balance condition
SQDB-� here, tr(ρ1/2xρ1/2Tt (y)) = tr(ρ1/2� ◦ Tt ◦ �(x)ρ1/2y), contrasts with the
Agarwal-Majewski QDB condition [2, 25]: tr(ρxTt (y)) = tr(ρ(� ◦ Tt ◦ �)(x)y).

123



Entropy production of quantum Markov semigroup… Page 5 of 31    81 

In [13], Fagnola and Umanita characterized the SQDB and SQDB-� conditions by the
operators H and (Ll)l in the special representation of the generator L. Here we intro-
duce it for the SQDB-�, which will be used in this paper. In the GKSL representation
of the generator, let us put

G = −1

2

∑

l≥1

L∗
l Ll − i H (2.8)

so that
L(x) = G∗x +

∑

l≥1

L∗
l x Ll + xG. (2.9)

Theorem 2.4 [13, Theorem 8] A QMS T satisfies the SQDB-� condition if and only
if there exists a special GKSL representation of L with operators G, Ll , such that:

(i) ρ1/2�(G) = Gρ1/2,
(ii) ρ1/2�(Lk) = ∑

j uk j L jρ
1/2 for a self-adjoint unitary (ukj )k j on k, a Hilbert

space whose dimension is the number of indices for Ll ’s.

3 Entropy production

In this Section we summarize the entropy production formula for the quantumMarkov
semigroups obtained by Fagnola and Rebolledo in [9]. Given an invariant state ρ for
the QMS T = (Tt )t≥0, the two-point forward and backward states are defined as
follows.

Definition 3.1 The forward two-point state is the normal state on A ⊗ A given by

→
�t (a ⊗ b) = tr

(
ρ1/2�(a)ρ1/2Tt (b)

)
, a, b ∈ A;

the backward two-point state is the normal state on A ⊗ A given by

←
�t (a ⊗ b) = tr

(
ρ1/2�(Tt (a))ρ1/2b

)
, a, b ∈ A.

The following was obtained in [9, Proposition 1].

Proposition 3.2 Let ρ = ∑
j ρ j |e j 〉〈e j | be a spectral decomposition of the invariant

state ρ for the QMS T . The density of states
→
�0 = ←

�0 is the rank one projection

D = |r〉〈r |, r =
∑

j

ρ
1/2
j θe j ⊗ e j .

The densities of the forward and backward states are, respectively

→
Dt = (I ⊗ T∗t )(D),

←
Dt = (T∗t ⊗ I )(D).
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Let us denote by Tr(·) the trace on h ⊗ h. The relative entropy of
→
�t with respect

to
←
�t is given by

S(
→
�t ,

←
�t ) = Tr(

→
Dt (log

→
Dt − log

←
Dt )),

if the support of
→
Dt is included in that of

←
Dt and +∞ otherwise.

Definition 3.3 The entropy production rate of a QMS T with an invariant state ρ is
defined by

ep(T , ρ) = lim sup
t→0+

S(
→
�t ,

←
�t )

t
.

In order to have a non-trivial entropy production rate, it is obvious that the supports

of
→
Dt and

←
Dt are comparable. So, we consider the following assumption (see [9]).

(FBS) Supports of
→
Dt and

←
Dt coincide and are of finite dimensional.

Suppose that the QMS has a special representation of the generator L as in Theorem

2.1. Let
→
�∗ and

←
�∗ be the linear maps on the trace class operators on h ⊗ h

→
�∗(X) =

∑

l

(1l ⊗ Ll)X
(
1l ⊗ L∗

l

)
,

←
�∗(X) =

∑

l

(Ll ⊗ 1l)X
(
L∗
l ⊗ 1l

)
.

Theorem 3.4 ([9, Theorem 5]) Let T be a norm continuous QMS on B(h) with a
faithful, normal invariant state ρ. Under the assumption (FBS) the entropy production
is given by

ep(T , ρ) = 1

2
Tr

((→
�∗(D) − ←

�∗(D)
)(
log

→
�∗(D) − log

←
�∗(D)

))
.

Asmentioned in the above, it is important that the supports of
→
Dt and

←
Dt are the same.

For it, we will use the following theorem.

Theorem 3.5 ([9, Theorem 8]) Let T be a QMS with generator L and suppose that
ρ1/2�(G) = Gρ1/2. The following conditions are equivalent:

(a) the closed linear spans of {Llρ
1/2|l ≥ 1} and {ρ1/2�(Ll)|l ≥ 1} in the Hilbert

space of Hilbert–Schmidt operators on h coincide,

(b) the forward and backward states
→
Dt and

←
Dt have the same supports.

4 Entropy production of QMS associated with OQWs on the integer
lattices with periodic boundary condition

In this Sectionwe consider theQMS associatedwithOQWs on the integer lattices with
periodic boundary condition and compute the entropy production. It will be turned out
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that the entropy production becomes the weighted sum of the entropy productions in
each direction of the axis. To see this we separately consider the model on the cycle
and on the torus.

4.1 OQWs on the cycle

B1 and B−1 are 2 × 2 matrices such that

∑

α∈{1,−1}
B∗

αBα = I2. (4.1)

Let Cn := {0, 1, . . . , n−1} be the cycle of length n. Let h := l2(Cn,C
2) ∼= ⊕i∈CnC

2

be the Hilbert space with an orthonormal basis consisting of e(i,α), i ∈ Cn , α = 1,−1,
defined by

e(i,α) = (0, . . . , 0,
i th|α〉, 0, . . . , 0),

where {|α〉 : α=1,−1} is a canonical basis ofC2, namely |α〉=
{

(1, 0)T, if α = 1,

(0, 1)T, if α = −1
.

It is also convenient to consider the isomorphism between l2(Cn) ⊗C
2 and ⊕i∈CnC

2

given by the map u ⊗ ξ �→ (u0ξ, . . . , un−1ξ), where u = (u0, . . . , un−1) ∈ l2(Cn)

and ξ ∈ C
2. In that case we denote by {|i〉 : i ∈ Cn} the canonical basis of l2(Cn).

Therefore, e(i,α) is identified with |i〉 ⊗ |α〉.
Let L(i,α) ∈ B(h) be defined by

L(i,α) = |i + α〉〈i | ⊗ Bα.

Notice that

∑

(i,α)

L∗
(i,α)L(i,α) = Ih.

Let A := ⊕i∈CnB(C2) be the direct sum of 2 × 2 matrices, which is a von Neumann
subalgebra of B(h). We consider a QMS on A with a generator given by

L(x) := −1

2

∑

(i,α)

(
L∗

(i,α)L(i,α)x − 2L∗
(i,α)xL(i,α) + xL∗

(i,α)L(i,α)

)
,

=
∑

(i,α)

L∗
(i,α)xL(i,α) − x . (4.2)

Notice that the G-operator in (2.8) becomes G = − 1
2

∑
(i,α) L

∗
(i,α)L(i,α) = − 1

2 Ih.
The action of L is given as follows. For any x = (xi )i∈Cn = ∑

i∈Cn
|i〉〈i | ⊗ xi ∈ A,

we have
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L(x) = (
x ′
i

)
i∈Cn

,

with

x ′
i = B∗

1 xi+1B1 + B∗−1xi−1B−1 − xi , i ∈ Cn .

Let θ be the conjugation operator on h defined by

θ

⎛

⎝
∑

(i,α)

u(i,α)e(i,α)

⎞

⎠ =
∑

(i,α)

u(i,α)e(i,α).

The reversing operation is then defined on B(h) by

�(a) := θa∗θ, a ∈ B(h). (4.3)

Lemma 4.1 The invariant states for the QMS T with generator L in (4.2) are of the
form

ρ =
∑

i∈Cn

|i〉〈i | ⊗ ρi

satisfying

ρi = B1ρi−1B
∗
1 + B−1ρi+1B

∗−1, i ∈ Cn,

where ρi ’s are positive definite 2 × 2 matrices such that
∑

i∈Cn
tr(ρi ) = 1.

From now on, let us focus on the computation of the entropy production in this
model. For a simplicity we will require that the normalized identity operator on h
is an invariant state (may not be unique) for the QMS. By Lemma 4.1, a sufficient
condition, which will be assumed, is the relation

B1B
∗
1 + B−1B

∗−1 = I2. (4.4)

In order to have nontrivial entropy production, it is also required to satisfy the condition
(a) in Theorem 3.5. Therefore, we define the operators B±1 as follows: given any 2×2
matrix U and a complex number λ �= 0, let

B1 = U , B−1 = λUT. (4.5)

To satisfy the conditions (4.1) and (4.4), U and λ should fulfill

U∗U + |λ|2(UU∗)T = I2, UU∗ + |λ|2(U∗U )T = I2. (4.6)

In the sequel we assume (4.6). Then, the state ρ = 1
2n Ih is an invariant state for the

QMS generated by L in (4.2). Let us provide with some necessary lemmas.
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Lemma 4.2 Let r be the vector of h ⊗ h given in Proposition 3.2. Then we have

〈(1l ⊗ L(i,α))r , (1l ⊗ L( j,β))r〉 = δi, jδα,β

1

2n
tr
(
B∗

αBβ

)
,

〈(L(i,α) ⊗ 1l)r , (L( j,β) ⊗ 1l)r〉 = δi, jδα,β

1

2n
tr
(
B∗

αBβ

)
.

Proof Since r = 1√
2n

∑
(k,γ ) e(k,γ ) ⊗ e(k,γ )

(1l ⊗ L(i,α))r = 1√
2n

∑

(k,γ )

e(k,γ ) ⊗ L(i,α)e(k,γ )

= 1√
2n

∑

(k,γ )

e(k,γ ) ⊗ (|i + α〉〈i | ⊗ Bα) (|k〉 ⊗ |γ 〉)

= 1√
2n

∑

γ=±1

e(i,γ ) ⊗ (|i + α〉 ⊗ Bα|γ 〉)

Therefore,

〈(1l ⊗ L(i,α))r , (1l ⊗ L( j,β))r〉 = 1

2n

∑

γ=±1

δi, jδα,β〈γ,
(
B∗

αBβ

)
γ 〉

= δi, jδα,β

1

2n
tr
(
B∗

αBβ

)
.

The second equality can be shown similarly. ��
For a notational simplicity, let us denote

u(i,α) = (1l ⊗ L(i,α))r

‖(1l ⊗ L(i,α))r‖ and v(i,α) = (L(i,α) ⊗ 1l)r

‖(L(i,α) ⊗ 1l)r‖ , i ∈ Cn, α = ±1.

Lemma 4.3 For all i, j ∈ Cn and α, β ∈ {+1,−1},

Tr(|u(i,α)〉〈u(i,α)| |v( j,β)〉〈v( j,β)|)
= δi, j+βδi+α, j

1

tr
(
B∗

αBα

)
tr
(
B∗

βBβ

)
∣
∣
∣

∑

γ,γ ′∈{+1,−1}
〈γ, B∗

αγ ′〉〈γ, Bβγ ′〉
∣
∣
∣
2

Proof Since |u(i,α)〉〈u(i,α)| and |v( j,β)〉〈v( j,β)| are, respectively, rank one projections,

Tr(|u(i,α)〉〈u(i,α)| |v( j,β)〉〈v( j,β)|) = |〈u(i,α), v( j,β)〉|2.

As was shown in the proof of Lemma 4.2, we have
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(1l ⊗ L(i,α))r = 1√
2n

∑

γ=±1

e(i,γ ) ⊗ (|i + α〉 ⊗ Bα|γ 〉)

(L( j,β) ⊗ 1l)r = 1√
2n

∑

γ ′=±1

(| j + β〉 ⊗ Bβ |γ ′〉) ⊗ e( j,γ ′).

Taking the inner product and implementing the norms of (1l⊗L(i,α))r and (L( j,β)⊗1l)r
from Lemma 4.2, we get the result. ��

We are ready for the computation of the entropy production for the QMS associated
with open quantum walks on a cycle. We have

Theorem 4.4 Suppose that B±1 are defined by (4.5) and the relation (4.6) is satisfied.
Then, the entropy production for the QMS associated with OQW on the cycle with
respect to the invariant state ρ = 1

2n Ih is given by

ep(T , ρ) = p log
p

q
+ q log

q

p
, with p = 1

1 + |λ|2 and q = |λ|2
1 + |λ|2 . (4.7)

Proof By Lemma 4.2, using D = |r〉〈r |,
→
�∗(D) =

∑

(i,α)

‖(1l ⊗ L(i,α))r‖2|u(i,α)〉〈u(i,α)|

=
∑

(i,α)

1

2n
tr
(
B∗

αBα

)|u(i,α)〉〈u(i,α)|. (4.8)

Similarly we have

←
�∗(D) =

∑

(i,α)

1

2n
tr
(
B∗

αBα

)|v(i,α)〉〈v(i,α)|. (4.9)

By Lemma 4.2, {|u(i,α)〉〈u(i,α)| : i ∈ Cn, α = ±1} and {|v(i,α)〉〈v(i,α)| : i ∈ Cn,

α = ±1} are mutually orthogonal projections, respectively. Therefore, by (4.8) and
(4.9),

ep(T , ρ) = 1
2Tr((

→
�∗(D) − ←

�∗(D))(log(
→
�∗(D)) − log(

←
�∗(D))))

= 1
2Tr

((∑
(i,α)

tr
(
B∗

αBα

)

2n |u(i,α)〉〈u(i,α)| − ∑
( j,β)

tr
(
B∗

β Bβ

)

2n |v( j,β)〉〈v( j,β)|
)

(∑
(i,α) log

(
tr
(
B∗

αBα

)

2n

)
|u(i,α)〉〈u(i,α)| − ∑

( j,β) log
( tr

(
B∗

β Bβ

)

2n

)
|v( j,β)〉〈v( j,β)|

))

= ∑
(i,α)

tr
(
B∗

αBα

)

2n log
tr
(
B∗

αBα

)

2n − 1
2

∑
(i,α)

∑
( j,β)

(
tr
(
B∗

αBα

)

2n log
tr
(
B∗

β Bβ

)

2n

+ tr
(
B∗

β Bβ

)

2n log
tr
(
B∗

αBα

)

2n

)
Tr(|u(i,α)〉〈u(i,α)|v( j,β)〉〈v( j,β)|).
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In the last term of trace, by Lemma 4.3, given (i, α) a non-zero term appears only for
the index ( j, β) = (i + α,−α). Implementing the value of the trace by using Lemma
4.3 we get

ep(T , ρ) = 1
2

∑
α∈{+1,−1} tr

(
B∗

αBα

)
log

tr
(
B∗

αBα

)

2n

− 1
4

∑
α∈{+1,−1}

(
1

tr
(
B∗−αB−α

) log
tr
(
B∗−αB−α

)

2n + 1

tr
(
B∗

αBα

) log
tr
(
B∗

αBα

)

2n

)

×
∣
∣
∣
∑

γ,γ ′∈{+1,−1}〈γ, B−αγ ′〉〈γ, B∗
αγ ′〉

∣
∣
∣
2
.

By the definition B1 = U , B−1 = λUT, the last line becomes

∣
∣
∣
∣
∣
∣

∑

γ,γ ′∈{+1,−1}
〈γ, B−αγ ′〉〈γ, B∗

αγ ′〉
∣
∣
∣
∣
∣
∣

2

= |λ|2tr(U∗U
)2

,

no matter what the value α ∈ {1,−1} is. Putting this into the formula we get

ep(T , ρ) = 1

2
tr
(
U∗U

)(
log

1

|λ|2 + |λ|2 log |λ|2
)
. (4.10)

Now taking traces to both sides of (4.6), we obtain tr(U∗U ) = 2/(1 + |λ|2). Putting
back into (4.10) and defining p = 1/(1 + |λ|2) and q = |λ|2/(1 + |λ|2), we get

ep(T , ρ) = 1

1 + |λ|2
(
log

1

|λ|2 + |λ|2 log |λ|2
)

= p log
p

q
+ q log

q

p
.

It completes the proof. ��
Let us consider some examples.

Example 4.5 Let B1 = √
pU and B−1 = √

qUT (or B− = −√
qUT) with p, q ∈

(0, 1), p + q = 1, where U is a real unitary matrix. In this case we have

U =
(

a b
−b a

)

or U =
(
a b
b −a

)

with a, b ∈ R, a2 + b2 = 1. (4.11)

Directly computing from Theorem 4.4, we get

ep(T , ρ) = p log
p

q
+ q log

q

p
.

Notice that if we define two probability measures P and Q on {+1,−1} by

P(+1) = p, P(−1) = q, and Q(+1) = q, Q(−1) = p,
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the entropy production is the classical relative entropy H(Q|P):

H(Q|P) =
∑

α∈{+1,−1}
Q(α) log

Q(α)

P(α)
.

Example 4.6 B1 =
(
a b
0 −a

)

, B−1 = (B1)
T, with a, b ∈ R satisfying 2a2+b2 = 1.

In this case we promptly get ep(T , ρ) = 0, since p = q = 1/2 in (4.7).

4.2 QMS of open quantumwalks on the torus

In this subsection we consider the higher dimensional model. We focus on a two
dimensional torus andwill see that it can be easily extended tomore higher dimensions.
Let

T ≡ T(m,n) := Z
2/(mZ × nZ) = {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1}

be a torus of sizem×n. The Hilbert space for our model is h = ⊕i∈TC4 ∼= l2(T)⊗C
4.

The canonical basis of l2(T) is denotedby {|i〉 : i ∈ T} andweuse {|eα〉 : α = ±1, ±2}
for the canonical basis ofC4. Hence the set {e(i,α) := |i〉⊗|eα〉 : i ∈ T, α = ± 1,± 2}
constitutes an orthonormal basis for h.

LetU andV be (complex) 4×4matrices andμ and ν be non-zero complex numbers.
For α = ±1, ±2, define the following 4 × 4 matrices Bα:

B1 = U , B−1 = μUT and B2 = V , B−2 = νV T. (4.12)

We require the following conditions:

∑

α=±1,±2

B∗
αBα = I4 and

∑

α=±1,±2

BαB
∗
α = I4. (4.13)

For it, it is necessary and sufficient that U , V and μ, ν satisfy:

U∗U + V ∗V + |μ|2(UU∗)T + |ν|2(VV ∗)T = I4, (4.14)

UU∗ + VV ∗ + |μ|2(U∗U )T + |ν|2(V ∗V )T = I4. (4.15)

Notice that we can find many pairs {U , V } and {μ, ν} that satisfy the Eqs. (4.14) and
(4.15). For example, take U and V as the following form,

U =
(
B 0
0 0

)

, V =
(
0 0
0 C

)

,

where B and C are 2× 2 matrices, and the pairs (B, μ) and (C, ν) take the role of the
pair (U , λ) in (4.5).
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For each element eα , α = ±1,±2, we assign a unit vector θ̂ (eα) in R2 by

θ̂ (e1) = (1, 0), θ̂ (e2) = (0, 1), θ̂ (e−1) = −θ̂ (e1), θ̂ (e−2) = −θ̂ (e2).

For each pair (i, α) ∈ T × {±1,±2}, define a linear operator L(i,α) : h → h by

L(i,α) := |i + θ̂ (eα)〉〈i| ⊗ Bα. (4.16)

We can check ∑

(i,α)

L∗
(i,α)L(i,α) = Ih and

∑

(i,α)

L(i,α)L
∗
(i,α) = Ih. (4.17)

As like the model on the cycle, the generator of the QMS associated with the open
quantum walk on the torus is defined as follows: for x ∈ A := ⊕i∈TB(C4) ⊂ B(h),

L(x) := −1

2

∑

(i,α)

(
L∗

(i,α)L(i,α)x − 2L∗
(i,α)xL(i,α) + xL∗

(i,α)L(i,α)

)

=
∑

(i,α)

L∗
(i,α)xL(i,α) − x

=: G∗x +
∑

(i,α)

L∗
(i,α)xL(i,α) + xG, (4.18)

with G = − 1
2

∑
(i,α) L

∗
(i,α)L(i,α) = − 1

2 Ih. Notice that by (4.13), the state ρ := 1
4mn Ih

is an invariant state for the QMS.
Constructing the QMS T = (Tt )t≥0, let us compute the entropy production. The

definition of forward and backward two-point states is the same as given by Definition
3.1. Defining a unit vector

r = 1√
4mn

∑

(i,α)∈T×{±1,±2}
e(i,α) ⊗ e(i,α) ∈ h ⊗ h

and a rank one projection D := |r〉〈r | ∈ B(h) ⊗ B(h), our construction of the QMS
is to satisfy the assumption (FBS). Therefore, we can use the formula for the entropy
production inTheorem3.4. To state the result let us introduce some convenient notions.
By (4.14), taking traces we get

(1 + |μ|2)tr(U∗U
) + (1 + |ν|2)tr(V ∗V

) = 4.

Let λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1 be defined as

(1 + |μ|2)tr(U∗U
) = 4λ1 and (1 + |ν|2)tr(V ∗V

) = 4λ2. (4.19)

Let us also define two Bernoulli parameters:

pμ = 1

1 + |μ|2 , qμ = |μ|2
1 + |μ|2 and pν = 1

1 + |ν|2 , qν = |ν|2
1 + |ν|2 . (4.20)
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Theorem 4.7 Let T = (Tt )t≥0 be the QMS with a generator given by (4.18). Then,
the entropy production for the QMS is given by

ep(T , ρ) = λ1

(

qμ log
qμ

pμ

+ pμ log
pμ

qμ

)

+ λ2

(

qν log
qν

pν

+ pν log
pν

qν

)

.

In order to prove the theorem, similarly to the previous subsection, we prepare some
useful lemmas.

Lemma 4.8 The following orthogonalities hold: for all i, j ∈ T and α, β ∈ {±1,±2},

〈(1l ⊗ L(i,α))r , (1l ⊗ L(j,β))r〉 = δi,jδα,β

1

4mn
tr
(
B∗

αBβ

)
,

〈(L(i,α) ⊗ 1l)r , (L(j,β) ⊗ 1l)r〉 = δi,jδα,β

1

4mn
tr
(
B∗

αBβ

)
.

Proof It can be shown by the same way done in the proof of Lemma 4.2. ��
Let us define the unitary vectors.

u(i,α) = (1l ⊗ L(i,α))r

‖(1l ⊗ L(i,α))r‖ and v(i,α) = (L(i,α) ⊗ 1l)r

‖(L(i,α) ⊗ 1l)r‖ , i ∈ T, α = ±1,±2.

Then the sets of vectors {u(i,α)}(i,α) and {v(i,α)}(i,α) are orthonormal systems in h⊗h.
Using Lemma 4.8 we have the representations:

Lemma 4.9

→
�∗(D) =

∑

(i,α)∈T×{±1,±2}

1

4mn
tr
(
B∗

αBα

)|u(i,α)〉〈u(i,α)|,

←
�∗(D) =

∑

(i,α)∈T×{±1,±2}

1

4mn
tr
(
B∗

αBα

)|v(i,α)〉〈v(i,α)|,

We will need also

Lemma 4.10 For all i, j ∈ T and α, β ∈ {±1,±2},

〈u(i,α), v(j,β)〉 = δi,j+θ̂ (eβ)δi+θ̂ (eα),j
1

√
tr
(
B∗

αBα

)
tr
(
B∗

βBβ

) tr
(
B∗

αB
T
β

)
.

Proof By the same lines for the proof of Lemma 4.3 we get

〈u(i,α), v(j,β)〉 = δi,j+θ̂ (eβ)δi+θ̂ (eα),j
1

√
tr
(
B∗

αBα

)
tr
(
B∗

βBβ

)

∑

γ,γ ′∈{±1,±2}

〈
eγ , B∗

αeγ ′
〉〈
eγ , Bβeγ ′

〉
.
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Then observe that

∑

γ,γ ′∈{±1,±2}

〈
eγ , B∗

αeγ ′
〉〈
eγ , Bβeγ ′

〉 =
∑

γ,γ ′∈{±1,±2}

〈
eγ , B∗

αeγ ′
〉〈
e′
γ , BT

β eγ

〉

= tr
(
B∗

αB
T
β

)
.

The proof is completed. ��
Proof of Theorem 4.7 We use Lemmas 4.9 and 4.10 in the formula of entropy produc-
tion in Theorem 3.4 and get

ep(T , ρ) = 1

4

(
tr
(
U∗U

)
log

tr
(
U∗U

)

4mn
+ |μ|2tr(U∗U

)
log

|μ|2tr(U∗U
)

4mn

+tr
(
V ∗V

)
log

tr
(
V ∗V

)

4mn
+ |ν|2tr(V ∗V

)
log

|ν|2tr(V ∗V
)

4mn

−1

4

(
tr
(
U∗U

)
log

|μ|2tr(U∗U
)

4mn
+ |μ|2tr(U∗U

)
log

tr
(
U∗U

)

4mn

+tr
(
V ∗V

)
log

|ν|2tr(V ∗V
)

4mn
+ |ν|2tr(V ∗V

)
log

tr
(
V ∗V

)

4mn

)

= 1

4

(
tr
(
U∗U

)(
log

1

|μ|2 + |μ|2 log |μ|2
)

+tr
(
V ∗V

)(
log

1

|ν|2 + |ν|2 log |ν|2
))

.

Using the notations in (4.19) and (4.20), the last term can be rewritten as the formula
in the statement. ��

5 QMS of open quantumwalks on the crystal torus

In this section we consider the model of QMSs coming from open quantum walks on
the crystal lattices. The crystal lattices can be thought of as the regular lattices but
each lattice point may have some intrinsic structure. The integer lattices are definitely
special class of crystal lattices and in general when we consider some model on the
crystal lattices it gives rich properties more than that could be obtained on the integer
lattices. The central limit theorem for open quantum walks on the crystal lattices was
obtained in [17] and here, for self-containedness, we briefly introduce how the crystal
lattices can be constructed and define the QMS associated with the OQWs on a finite
system, say on a crystal torus. See the reference [17] for more details.

5.1 Construction of crystal lattices

Let G0 = (V0, E0) be a finite graph which may have multi-edges and self-loops. We
use the notation A(G0) for the set of symmetric arcs induced by E0. (An arc is an edge
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with a direction. So, each edge of E0 gives a pair of arcs e and e, where e is an arc
having the same end points of e but with a reversed direction.) The homology group of
G0 with integer coefficients is denoted by H1(G0,Z). Let the set of basis of H1(G0,Z)

be {C1,C2, . . . ,Cb1} corresponding to the fundamental cycles of G0, where b1 is the
first Betti number of G0. The spanning tree induced by {C1,C2, . . . ,Cb1} is denoted
by T0. Then A(T0)

c can be indexed as {ei , ei : i = 1, . . . , b1} so that each Ci is the
cycle generated by adding ei to T0. Given a subgroup H ⊂ H1(G0,Z), the quotient
group H1(G0,Z)/H induces an abstract periodic lattice L, which is isomorphic to an
integer lattice Zd for some 1 ≤ d ≤ b1 [29]. Let {θ̂i : i = 1, . . . , d} ⊂ R

d be a basis
that generates L, i.e.,

L =
{∑

ni θ̂i : ni ∈ Z, i = 1, . . . , d
}

.

We choose a map θ̂ from A(G0) to {±θ̂i : i = 1, . . . , d} ∪ {0} that satisfies (i)
θ̂ (e) = −θ̂ (e), (ii) the rank of {θ̂ (e) : e ∈ A(G0)} is d, and (iii) θ̂ (e) = 0 if and only
if e ∈ A(T0).

The crystal lattice of a fundamental finite graph G(V0, E0) is the covering graph
G(V , A) defined as follows. Let φ0(T0) be a realization of T0 on Rd , namely, φ0(T0)

is a finite graph on R
d with vertices φ0(u), u ∈ T0 and the edges of φ0(T0) are the

line segments connecting the points of φ0(V0) such that φ0(u) ∼ φ0(v) if and only if
u ∼ v. Then the vertex set V of G(V , A) is defined by

V = L + φ0(V0).

We use a simple notation (i, u) for the element i + φ0(u) for some i ∈ L and u ∈ V0.
Next the edges are defined by

A = ∪i∈L
{(

(i, o(e)), (i + θ̂ (e), t(e))
) | e ∈ A(G0)

}
.

In Fig. 1 we see a hexagonal lattice. In the fundamental finite graph G0 we have two
generating cycles, e.g. C1 = e1 + e3 and C2 = e2 + e3. For a subgroup H = {0}
we have d = 2. We have chosen θ̂1 = (1, 0) and θ̂2 = (0, 1). V (T0) = {u, v} and
A(T0) = {e3, e3}. We have taken θ̂ (ei ) = θ̂i , i = 1, 2.

5.2 QMS associated with open quantumwalks on the crystal torus

In this subsection we consider open quantum walks on a crystal torus, i.e., 2-
dimensional finite crystals with periodic boundary conditions. Instead of dealing with
the general models, to make everything concrete, we just consider a hexagonal torus.
For it let m, n be given natural numbers and let

T ≡ T(m,n) := Z
2/(mZ × nZ) = {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1}

be a torus of sizem×n. The Hilbert space for our model is h = ⊕i∈TC6 ∼= l2(T)⊗C
6.
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Fig. 1 Hexagonal lattice: underlying graph G0 for hexagonal lattice (left), hexagonal lattice (right)

LetU , V , andW be (complex) 6×6 matrices andμ, ν, and η be non-zero complex
numbers. For the 6 directed arcs of A(G0) we define the following 6 × 6 matrices:

B(e1) = U , B(e2) = V , B(e3) = W ,

and B(e1) = μB(e1)T, B(e2) = νB(e2)T, and B(e3) = ηB(e3)T, i.e.,

B(e1) = μUT, B(e2) = νV T, B(e3) = ηWT. (5.1)

We demand that the following conditions are satisfied:

3∑

i=1

(
B(ei )

∗B(ei ) + B(ei )
∗B(ei )

) = I6 and
3∑

i=1

(
B(ei )B(ei )

∗ + B(ei )B(ei )
∗) = I6.

(5.2)
For it, it is necessary and sufficient that U , V ,W and μ, ν, η satisfy:

U∗U + V ∗V + W ∗W + |μ|2(UU∗)T + |ν|2(VV ∗)T + |η|2(WW ∗)T = I6, (5.3)

UU∗ + VV ∗ + WW ∗ + |μ|2(U∗U )T + |ν|2(V ∗V )T + |η|2(W ∗W )T = I6. (5.4)

Notice that we can find many triples of matrices {U , V ,W } and parameters {μ, ν, η}
that satisfy the Eqs. (5.3) and (5.4). Here is an example: take U , V , and W as the
following form,

U =
⎛

⎝
B 0 0
0 0 0
0 0 0

⎞

⎠ , V =
⎛

⎝
0 0 0
0 C 0
0 0 0

⎞

⎠ , W =
⎛

⎝
0 0 0
0 0 0
0 0 D

⎞

⎠ , (5.5)

where B,C , and D are 2 × 2 matrices, and the pairs (B, μ), (C, ν), and (D, η) take
the role of the pair (B1, λ) in (4.5)–(4.6).
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The canonical basis of l2(T) is denoted by {|i〉 : i ∈ T} and the coordinates of C6

will be indexed by A(G0), thereby it has a canonical basis {|ei 〉, |ei 〉 : i = 1, 2, 3}.
Then, a basis for h = ⊕i∈TC6 is given by {e(i,e) = |i〉 ⊗ |e〉 : i ∈ T, e ∈ A(G0)}. For
each pair (i, e) ∈ T × A(G0), define a linear operator L(i,e) : h → h by

L(i,e) := |i + θ̂ (e)〉〈i| ⊗ B(e).

We can check ∑

(i,e)

L∗
(i,e)L(i,e) = Ih and

∑

(i,e)

L(i,e)L
∗
(i,e) = Ih. (5.6)

As in the model on the cycle, the generator of QMS associated with the open quantum
walk on the hexagonal torus is defined as follows: for x ∈ A := ⊕i∈TB(C6) ⊂ B(h),

L(x) := −1

2

∑

(i,e)

(
L∗

(i,e)L(i,e)x − 2L∗
(i,e)xL(i,e) + xL∗

(i,e)L(i,e)

)

=
∑

(i,e)

L∗
(i,e)xL(i,e) − x

=: G∗x +
∑

(i,e)

L∗
(i,e)xL(i,e) + xG, x ∈ B(h), (5.7)

with G = − 1
2

∑
(i,e) L

∗
(i,e)L(i,e) = − 1

2 Ih. Notice that by (5.6), the state ρ := 1
6mn Ih

is an invariant state for the QMS.

5.3 Entropy production

In this subsection we compute the entropy production for the QMS with generator
of (5.7). As in the previous section, θ is the conjugation operator with respect to the
basis {e(i,e) : (i, e) ∈ T × A(G0)} and so the reversing operation �(a) := θa∗θ is
equal to taking a transpose aT when the operators of B(h) are represented by the basis
{e(i,e)}. The definition of forward and backward two-point states are the same as given
by Definition 3.1. Defining a unit vector

r = 1√
6mn

∑

(i,e)∈T×A(G0)

e(i,e) ⊗ e(i,e) ∈ h ⊗ h

and a rank one projection D := |r〉〈r | ∈ B(h) ⊗ B(h), our construction of the QMS
is to satisfy the assumption (FBS). Therefore, we can use the formula for the entropy
production in Theorem 3.4.

For the computation of the entropy productionwefirst need to check the orthogonal-
ity properties of the vectors {(1l⊗L(i,e))r}(i,e)∈T×A(G0) and {(L(i,e)⊗1l)r}(i,e)∈T×A(G0)

among themselves. Let us denote by χ the characteristic function 1{e3,e3} on A(G0).
We can prove
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Lemma 5.1 The following properties hold: for all i, j ∈ T and e, f ∈ A(G0),

〈(1l ⊗ L(i,e))r , (1l ⊗ L(j, f ))r〉 = δi,j

(
δe, f (1 − χ(e)(1 − χ( f )) + χ(e)χ( f )

)
1

6mn tr
(
B(e)∗B( f )

)
,

〈(L(i,e) ⊗ 1l)r , (L(j, f ) ⊗ 1l)r〉 = δi,j

(
δe, f (1 − χ(e)(1 − χ( f )) + χ(e)χ( f )

)
1

6mn tr
(
B(e)∗B( f )

)
.

This lemma says particularly that the sets {(1l ⊗ L(i,e))r}(i,e)∈T×A(G0) and {(L(i,e) ⊗
1l)r}(i,e)∈T×A(G0) are not orthogonal systems because 〈(1l⊗L(i,e3))r , (1l⊗L(i,e3))r〉 �=
0 and 〈(L(i,e3) ⊗ 1l)r , (L(i,e3) ⊗ 1l)r〉 �= 0 unless tr(W ∗WT) = 0. On the other hand,

since we have to take logarithms of
→
�∗(D) and

←
�∗(D), we need to orthogonalize

them. We therefore discuss the two cases separately.

5.3.1 The case tr(W∗WT) = 0

For each (i, e) ∈ T × A(G0), define the unit vectors:

u(i,e) = 1√
a(i,e)

(1l ⊗ L(i,e))r and v(i,e) = 1
√
b(i,e)

(L(i,e) ⊗ 1l)r , (5.8)

where

a(i,e) = ‖(1l ⊗ L(i,e))r‖2 = 1

6mn
tr
(
B(e)∗B(e)

)
, b(i,e) = ‖(L(i,e) ⊗ 1l)r‖2

= 1

6mn
tr
(
B(e)∗B(e)

)
.

Then byLemma5.1, the sets {u(i,e)}(i,e)∈T×A(G0) and {v(i,e)}(i,e)∈T×A(G0) are orthonor-
mal systems and we have the following representation

Lemma 5.2 Suppose that tr(W ∗WT) = 0. Then,

→
�∗(D) =

∑

(i,e)∈T×A(G0)

a(i,e)|u(i,e)〉〈u(i,e)|,
←
�∗(D) =

∑

(i,e)∈T×A(G0)

b(i,e)|v(i,e)〉〈v(i,e)|.

For the computation of the entropy production, we need also

Lemma 5.3 For (i, e), (j, f ) ∈ T × A(G0),

〈u(i,e), v(j, f )〉 = 1

6mn
√
a(i,e)b(j, f )

δi,j+θ̂ ( f )δj,i+θ̂ (e)tr
(
B(e)∗B( f )T

)
.

Proof Directly computing

〈u(i,e), v(j, f )〉 = 1

6mn
√
a(i,e)b(j, f )

δi,j+θ̂ ( f )δj,i+θ̂ (e)

∑

g,g′∈A(G0)

〈g, B( f )g′〉〈g, B(e)∗g′〉.
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Here we have

∑

g,g′∈A(G0)

〈g, B( f )g′〉〈g, B(e)∗g′〉 =
∑

g,g′∈A(G0)

〈g′, B( f )Tg〉〈g, B(e)∗g′〉

= tr
(
B(e)∗B( f )T

)
,

completing the proof. ��
We are ready to compute the entropy production. Taking traces to both sides of

(5.3) we get

(1 + |μ|2)tr(U∗U
) + (1 + |ν|2)tr(V ∗V

) + (1 + |η|2)tr(W ∗W
) = 6.

Let λ1, λ2, λ3 ∈ [0, 1] satisfying λ1 + λ2 + λ3 = 1 be defined as

(1 + |μ|2)tr(U∗U
) = 6λ1, (1 + |ν|2)tr(V ∗V

) = 6λ2, (1 + |η|2)tr(W ∗W
) = 6λ3.

(5.9)
We also introduce the parameters of Bernoulli distributions:

pμ = 1
1+|μ|2 , qμ = |μ|2

1+|μ|2 , pν = 1
1+|ν|2 , qν = |ν|2

1+|ν|2 , pη = 1
1+|η|2 , qη = |η|2

1+|η|2 .
(5.10)

Theorem 5.4 Let T = (Tt )t≥0 be the QMS with a generator given by (5.7). Suppose
that tr(W ∗WT) = 0. Then the entropy production for the QMS is given by

ep(T , ρ) = λ1

(
pμ log

pμ

qμ

+ qμ log
qμ

pμ

)
+ λ2

(
pν log

pν

qν

+ qν log
qν

pν

)

+λ3

(
pη log

pη

qη

+ qη log
qη

pη

)
.

Proof Using the entropy production formula in Theorem 3.4, by Lemmas 5.2 and 5.3,
and the assumption tr(W ∗WT) = 0, we get

ep(T , ρ) = 1

6

(

tr
(
U∗U

)
log

tr
(
U∗U

)

6mn
+ |μ|2tr(U∗U

)
log

|μ|2tr(U∗U
)

6mn

+ tr
(
V ∗V

)
log

tr
(
V ∗V

)

6mn
+ |ν|2tr(V ∗V

)
log

|ν|2tr(V ∗V
)

6mn

+ tr
(
W ∗W

)
log

tr
(
W ∗W

)

6mn
+ |η|2tr(W ∗W

)
log

|η|2tr(W ∗W
)

6mn

)

− 1

6

(

tr
(
U∗U

)
log

|μ|2tr(U∗U
)

6mn
+ |μ|2tr(U∗U

)
log

tr
(
U∗U

)

6mn

+ tr
(
V ∗V

)
log

|ν|2tr(V ∗V
)

6mn
+ |ν|2tr(V ∗V

)
log

tr
(
V ∗V

)

6mn
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+ tr
(
W ∗W

)
log

|η|2tr(W ∗W
)

6mn
+ |η|2tr(W ∗W

)
log

tr
(
W ∗W

)

6mn

)

= 1

6

(

tr
(
U∗U

)
(

log
1

|μ|2 + |μ|2 log |μ|2
)

+ tr
(
V ∗V

)
(

log
1

|ν|2 + |ν|2 log |ν|2
)

+ tr
(
W ∗W

)
(

log
1

|η|2 + |η|2 log |η|2
))

.

Using (5.9) and (5.10) we can rewrite the last formula as given in the statement of the
theorem. ��

5.3.2 The case tr(W∗WT) �= 0

If tr(W ∗WT) �= 0, by Lemma 5.1, 〈(1l⊗L(i,e3))r , (1l⊗L(i,e3))r〉 = η
6mn tr(W

∗WT)) �=
0, i.e., {(1l⊗ L(i,e))r}(i,e) is not an orthogonal system anymore. So, we need to orthog-

onalize to compute the logarithm of
→
�∗(D). Still we have to separately consider the

cases according to whether the vectors {(1l ⊗ L(i,e3))r , (1l ⊗ L(i,e3))r} are linearly
dependent or independent.

Lemma 5.5 The vectors {(1l ⊗ L(i,e3))r , (1l ⊗ L(i,e3))r} are linearly dependent if and
only if |tr(W ∗WT)| = tr(W ∗W ).

Proof Notice that two vectors {a,b} are linearly dependent if and only if ‖b‖2 =
|〈b, â〉|2, where â = a/‖a‖. We use this and Lemma 5.1 to get the result. ��
Remark 5.6

(i) By the Schwarz inequality we know |tr(W ∗WT)| ≤ tr(W ∗W ). Therefore, Lemma
5.5 equivalently says that the vectors {(1l ⊗ L(i,e3))r , (1l ⊗ L(i,e3))r} are linearly
independent if and only if |tr(W ∗WT)| < tr(W ∗W ).

(ii) The same is true for the pair of vectors {(L(i,e3) ⊗ 1l)r , (L(i,e3) ⊗ 1l)r}.
Case 1: 0 �= |tr(W ∗WT)| = tr(W ∗W ).

As (5.8) we define the unit vectors {u(i,e) = (1l ⊗ L(i,e))r/
√
a(i,e)} and {v(i,e) =

(L(i,e) ⊗ 1l)r/
√
b(i,e)}. Since the vectors {(1l ⊗ L(i,e3))r , (1l ⊗ L(i,e3))r} are linearly

dependent, noticing a(i,e3) = |η|2a(i,e3) and |u(i,e3)〉〈u(i,e3)| = |u(i,e3)〉〈u(i,e3)|, we can
write

|(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r | + |(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r |
= a(i,e3)|u(i,e3)〉〈u(i,e3)| + a(i,e3)|u(i,e3)〉〈u(i,e3)|
= (1 + |η|2)a(i,e3)|u(i,e3)〉〈u(i,e3)|.

Using this and similar computations for the pair {(L(i,e3) ⊗ 1l)r , (L(i,e3) ⊗ 1l)r}, we
have
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Lemma 5.7 Suppose that 0 �= |tr(W ∗WT)| = tr(W ∗W ). Then we have the represen-
tation

→
�∗(D) =

∑

i∈T

⎛

⎝
∑

e∈A(G0)\{e3,e3}
a(i,e)|u(i,e)〉〈u(i,e)| + (1 + |η|2)a(i,e3)|u(i,e3)〉〈u(i,e3)|

⎞

⎠ ,

←
�∗(D) =

∑

i∈T

⎛

⎝
∑

e∈A(G0)\{e3,e3}
b(i,e)|v(i,e)〉〈v(i,e)| + (1 + |η|2)b(i,e3)|v(i,e3)〉〈v(i,e3)|

⎞

⎠ .

We are ready to compute the entropy production.

Theorem 5.8 Suppose that 0 �= |tr(W ∗WT)| = tr(W ∗W ). Then,

ep(T , ρ) = λ1

(

pμ log
pμ

qμ

+ qμ log
qμ

pμ

)

+ λ2

(

pν log
pν

qν

+ qν log
qν

pν

)

,

where the parameters are defined in (5.9) and (5.10).

Proof With the preparation in Lemma 5.7 we use the entropy production formula in
Theorem 3.4 to get

ep(T , ρ) = 1

6

(

tr
(
U∗U

)
log

tr
(
U∗U

)

6mn
+ |μ|2tr(U∗U

)
log

|μ|2tr(U∗U
)

6mn

+ tr
(
V ∗V

)
log

tr
(
V ∗V

)

6mn
+ |ν|2tr(V ∗V

)
log

|ν|2tr(V ∗V
)

6mn

+ (1 + |η|2)tr(W ∗W
)
log

(1 + |η|2)tr(W ∗W
)

6mn

)

− 1

6

(

tr
(
U∗U

)
log

|μ|2tr(U∗U
)

6mn
+ |μ|2tr(U∗U

)
log

tr
(
U∗U

)

6mn

+ tr
(
V ∗V

)
log

|ν|2tr(V ∗V
)

6mn
+ |ν|2tr(V ∗V

)
log

tr
(
V ∗V

)

6mn

+ (1 + |η|2)tr(W ∗W
)
log

(1 + |η|2)tr(W ∗W
)

6mn

)

= 1

6

(

tr
(
U∗U

)
(

log
1

|μ|2 + |μ|2 log |μ|2
)

+tr
(
V ∗V

)
(

log
1

|ν|2 + |ν|2 log |ν|2
))

.

Using the parameters in (5.9) and (5.10) we get the result. ��
Case 2: 0 �= |tr(W ∗WT)| < tr(W ∗W ).
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In this case byLemma5.5 the vectors {(1l⊗L(i,e3))r , (1l⊗L(i,e3))r} (and also {(L(i,e3)⊗
1l)r , (L(i,e3) ⊗1l)r}) are linearly independent and they are not orthogonal to each other
as we are assuming tr(W ∗WT) �= 0. Therefore we need to diagonalize the operator

|(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r | + |(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r |

for the functional calculus in the entropy production.

Lemma 5.9 Suppose that 0 �= |tr(W ∗WT)| < tr(W ∗W ). The operator

|(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r | + |(1l ⊗ L(i,e3))r〉〈(1l ⊗ L(i,e3))r |

has eigenvalues

γ± = 1

12mn

(
(1 + |η|2)tr(W ∗W

) ±
√

(
(1 − |η|2)tr(W ∗W

))2 + (
2|η|tr(W ∗WT

))2
)

with corresponding eigenvectors

ξ(i,e3) = a+(1l ⊗ L(i,e3))r + (1l ⊗ L(i,e3))r ,

ξ(i,e3) = a−(1l ⊗ L(i,e3))r + (1l ⊗ L(i,e3))r ,

where

a± = (1 − |η|2)tr(W ∗W
) ±

√(
(1 − |η|2)tr(W ∗W

))2 + (
2|η|tr(W ∗WT

))2

2η tr
(
W ∗WT

) .

(5.11)
Similarly, the operator

|(L(i,e3) ⊗ 1l)r〉〈(L(i,e3) ⊗ 1l)r | + |(L(i,e3) ⊗ 1l)r〉〈(L(i,e3) ⊗ 1l⊗)r |

has the same eigenvalues γ± with corresponding eigenvectors

ζ(i,e3) = a+(L(i,e3) ⊗ 1l)r + (L(i,e3) ⊗ 1l)r ,

ζ(i,e3) = a−(L(i,e3) ⊗ 1l)r + (L(i,e3) ⊗ 1l)r .

Proof It is just a two-dimensional eigenvalue problem. ��
Now for i ∈ T and e ∈ A(G0)\{e3, e3}, as before, we let

u(i,e) = 1√
a(i,e)

(1l ⊗ L(i,e))r and v(i,e) = 1
√
b(i,e)

(L(i,e) ⊗ 1l)r

with a(i,e) = ‖(1l ⊗ L(i,e))r‖2, b(i,e) = ‖(L(i,e) ⊗ 1l)r‖2. Denoting ξ̂(i,e3) =
ξ(i,e3)/‖ξ(i,e3)‖ and ζ̂(i,e3) = ζ(i,e3)/‖ζ(i,e3)‖, the systems {u(i,e)}(i,e)∈T×A(G0)\{e3,e3} ∪
{̂ξ(i,e)}(i,e)∈T×{e3,e3} and {v(i,e)}(i,e)∈T×A(G0)\{e3,e3} ∪ {̂ζ(i,e)}(i,e)∈T×{e3,e3} are, respec-
tively, orthonormal systems in h ⊗ h, and we have the following representation.
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Lemma 5.10 It holds that

→
�∗(D)

= ∑
i∈T

( ∑
e∈A(G0)\{e3,e3} a(i,e)|u(i,e)〉〈u(i,e)| + γ+|̂ξ(i,e3)〉〈̂ξ(i,e3)| + γ−|̂ξ(i,e3)〉〈̂ξ(i,e3)|

)
,

←
�∗(D)

= ∑
i∈T

( ∑
e∈A(G0)\{e3,e3} b(i,e)|v(i,e)〉〈v(i,e)| + γ+|̂ζ(i,e3)〉〈̂ζ(i,e3)| + γ−|̂ζ(i,e3)〉〈̂ζ(i,e3)|

)
.

Lemma 5.11 We have

〈̂ξ(i,e3), ζ̂(i,e3)〉
= 1

6mn‖ξ(i,e3)‖ ‖ζ(i,e3)‖
(
(|a+|2 + |η|2)tr(W ∗WT) + (a+η + a+η)tr

(
W ∗W

))
,

〈̂ξ(i,e3), ζ̂(i,e3)〉
= 1

6mn‖ξ(i,e3)‖ ‖ζ(i,e3)‖
(
(a+a− + |η|2)tr(W ∗WT) + (a+η + a−η)tr

(
W ∗W

))
,

〈̂ξ(i,e3), ζ̂(i,e3)〉
= 1

6mn‖ξ(i,e3)‖ ‖ζ(i,e3)‖
(
(a−a+ + |η|2)tr(W ∗WT) + (a−η + a+η)tr

(
W ∗W

))
,

〈̂ξ(i,e3), ζ̂(i,e3)〉
= 1

6mn‖ξ(i,e3)‖ ‖ζ(i,e3)‖
(
(|a−|2 + |η|2)tr(W ∗WT) + (a−η + a−η)tr

(
W ∗W

))
,

with the vector norms

‖ξ(i,e3)‖2 = 1

6mn

(
(|a+|2 + |η|2)tr(W ∗W

) + (a+η + a+η)tr
(
W ∗WT))

,

‖ξ(i,e3)‖2 = 1

6mn

(
(|a−|2 + |η|2)tr(W ∗W

) + (a−η + a−η)tr
(
W ∗WT))

,

‖ζ(i,e3)‖2 = ‖ξ(i,e3)‖2, ‖ζ(i,e3)‖2 = ‖ξ(i,e3)‖2.

As a final preparation, we will see that the vector ξ(i,e3) and ξ(i,e3) lie in the space
spanned by the vectors {ζ(i,e3), ζ(i,e3)}.
Lemma 5.12 We have

span{ξ(i,e3), ξ(i,e3)} = span{ζ(i,e3), ζ(i,e3)}.

Proof It is equivalent to show

span{(1l ⊗ L(i,e3))r , (1l ⊗ L(i,e3))r} = span{(L(i,e3) ⊗ 1l)r , (L(i,e3) ⊗ 1l)r}.
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In fact, wewill see that (1l⊗L(i,e3))r = 1
η
(L(i,e3)⊗1l)r and (1l⊗L(i,e3))r = η(L(i,e3)⊗

1l)r . Let us denote the matrix components of W with respect to the canonical basis
{|ei 〉, |ei 〉 : i = 1, 2, 3} of C6 by We, f := 〈e,W f 〉 for |e〉, | f 〉 ∈ {|ei 〉, |ei 〉 : i =
1, 2, 3}. Notice that We, f = WT

f ,e. By definition,

√
6mn(1l ⊗ L(i,e3))r = (

1l ⊗ (|i + θ̂ (e3)〉〈i| ⊗ B(e3)
)) ∑

(j,e)

(|j〉 ⊗ |e〉) ⊗ (|j〉 ⊗ |e〉)

= (1l ⊗ (|i〉〈i| ⊗ W ))
∑

(j,e)

(|j〉 ⊗ |e〉) ⊗ (|j〉 ⊗ |e〉)

=
∑

e

(|i〉 ⊗ |e〉) ⊗ (|i〉 ⊗ |We〉)

=
∑

e, f

W f ,e (|i〉 ⊗ |e〉) ⊗ (|i〉 ⊗ | f 〉)

=
∑

f

(
|i〉 ⊗ |WT f 〉

)
⊗ (|i〉 ⊗ | f 〉)

= 1

η

√
6mn(L(i,e3) ⊗ 1l)r .

This shows that (1l ⊗ L(i,e3))r ∈ span{(L(i,e3) ⊗ 1l)r , (L(i,e3) ⊗ 1l)r}. By similar
computations we show the statement of the lemma. ��

We can now compute the entropy production. We define the parameters as in (5.9)
and (5.10). One more pair of Bernoulli parameters is defined as pγ := γ+/(γ+ + γ−)

and qγ := γ−/(γ+ + γ−).

Theorem 5.13 Suppose that 0 �= |tr(W ∗WT)| < tr(W ∗W ). Then,

ep(T , ρ) = λ1

(

pμ log
pμ

qμ

+ qμ log
qμ

pμ

)
+ λ2

(
pν log

pν

qν

+ qν log
qν

pν

)

+λ3

(

pγ log
pγ

qγ

+ qγ log
qγ

pγ

)

|〈̂ξ(i,e3), ζ̂(i,e3)〉|2.

Proof Using Theorem 3.4 we compute as in the proof of Theorem 5.8 to get

ep(T , ρ) = 1

6

(
tr
(
U∗U

)(
log

1

|μ|2 + |μ|2 log |μ|2
)

+tr
(
V ∗V

)(
log

1

|ν|2 + |ν|2 log |ν|2
))

+mn
(
γ+ log γ+ + γ− log γ−

)

−mn
(
γ+ log γ+|〈̂ξ(i,e3), ζ̂(i,e3)〉|2 + γ+ log γ−|〈̂ξ(i,e3), ζ̂(i,e3)〉|2

+γ− log γ+|〈̂ξ(i,e3), ζ̂(i,e3)〉|2 + γ− log γ−|〈̂ξ(i,e3), ζ̂(i,e3)〉|2
)
.
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By Lemma 5.12 we have the identity

1 = ‖̂ξ(i,e3)‖2 = |〈̂ξ(i,e3), ζ̂(i,e3)〉|2 + |〈̂ξ(i,e3), ζ̂(i,e3)〉|2.

Hence

|〈̂ξ(i,e3), ζ̂(i,e3)〉|2 = 1 − |〈̂ξ(i,e3), ζ̂(i,e3)〉|2.

Similarly, we have the identity

|〈̂ξ(i,e3), ζ̂(i,e3)〉|2 = 1 − |〈̂ξ(i,e3), ζ̂(i,e3)〉|2.

Weimplement these identities to the formula above anduse the identity |〈̂ξ(i,e3), ζ̂(i,e3)〉|2
= |〈̂ξ(i,e3), ζ̂(i,e3)〉|2 coming from Lemma 5.11, to get

ep(T , ρ) = 1

6

(
tr
(
U∗U

)(
log

1

|μ|2 + |μ|2 log |μ|2
)

+tr
(
V ∗V

)(
log

1

|ν|2 + |ν|2 log |ν|2
))

+mn
(
γ+ log

γ+
γ−

+ γ− log
γ−
γ+

)
|〈̂ξ(i,e3), ζ̂(i,e3)〉|2.

Using the already defined parameters the last formula changes into the one given in
the statement of the theorem. The proof is completed. ��
Remark 5.14 The different formulas for the entropy production in Theorems 5.4, 5.8,
and 5.13 resulted only from the internal movement, or the rotation. It depends whether
the projections that taking charge of the internal movement are linearly dependent
or independent and also whether they are orthogonal to each other or not. In the
following subsection, we will see that when the internal movement is defined by the
rotation matrix, the rotation angles determine the cases (see Proposition 5.16).

5.4 Examples

In this subsection we provide with some examples for which the different cases in the
previous subsection occur. We focus on the form of the matrix W , which was used to
define B(e3) = W and B(e3) = ηWT. For simplicity, let us consider the model with
the matrices of the form of (5.5) together with an idea in Example 4.5. To say more

concretely, let R =
(
cos θ − sin θ

sin θ cos θ

)

,−π < θ ≤ π , be the rotation matrix by an angle

θ . Then, let D = 1√
1+|η|2 R and W is defined as in (5.5).

Lemma 5.15 We have the following relations:

(i) tr(W ∗WT) = 0 if and only if cos2 θ = sin2 θ , i.e., θ ∈ {±π/4,±3π/4};
(ii) |tr(W ∗WT)| = tr(W ∗W ) if and only if cos θ sin θ = 0, i.e., θ ∈ {0, π,±π/2},

otherwise |tr(W ∗WT)| < tr(W ∗W ).
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Proof The proof follows easily from the direct computation. ��
Proposition 5.16 Consider a QMS associated with an OQW on the hexagonal torus
whose generator is defined by the matrices U, V , and W satisfying (5.3) and (5.4).
Suppose further that the matrix W is defined by using a 2 × 2 rotation matrix R =(
cos θ − sin θ

sin θ cos θ

)

as introduced in the beginning of this subsection. According to the

rotation angle θ we have:

(i) if θ ∈ {±π/4,±3π/4}, then the entropy production is given by the formula in
Theorem 5.4,

(ii) if θ ∈ {0, π,±π/2}, then the entropy production is given by the formula in Theorem
5.8,

(iii) if θ /∈ {±π/4,±3π/4, 0, π,±π/2}, then the entropy production is given by the
formula in Theorem 5.13.

Proof The proof follows from Lemma 5.15. ��

6 No-existence of entropy production and SQDB-2

In this Section we investigate the relationship between no-existence of entropy pro-
duction and SQDB-�. We separately discuss the QMSs for the OQWs on the regular
and Hexagonal lattices with periodic boundary conditions.

6.1 QMS associated with OQW on a torus

Let us consider the model on the regular integer lattice, typically the model on the
torus discussed in Sect. 4. We start with a lemma.

Lemma 6.1 Let T be a QMS associated with OQW on a torus with a generator in
(4.18). Then, T satisfies SQDB-� if and only if the parameters μ and ν in (4.12)
satisfy |μ| = |ν| = 1.

Proof Suppose that |μ| = |ν| = 1. We will show that the conditions (i) and (ii) in
Theorem 2.4 hold, thereby the SQDB-� is satisfied. Since the operators G and ρ are
constant multiples of the identity, (i) holds trivially.We check the condition (ii). Recall
that �(Lk) = LT

k . From (4.12) and the condition |μ| = |ν| = 1, we see that

BT
1 = μB−1, BT−1 = μB1, BT

2 = νB−2, BT−2 = νB2.

Therefore, from (4.16) we see that

LT
(i,α) = |i〉〈i + θ̂ (eα)| ⊗ BT

α

= wα|(i + θ̂ (eα)) + θ̂ (e−α)〉〈i + θ̂ (eα)| ⊗ B−α

= wαL(i+θ̂ (eα),−α).
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where (w1, w−1, w2, w−2) = (μ,μ, ν, ν). Obviously one can write

LT
(i,α) =

∑

(j,β)

u(i,α)(j,β)L(j,fi),

with u(i,α)(j,β) = wαδi+θ̂ (eα),jδ−α,β , which constitute a self-adjoint unitary matrix on
the Hilbert space k whose orthonormal basis is indexed by {(i, α) : i ∈ T(m,n), α ∈
{±1,±2}}.

Now suppose that T satisfies SQDB-�. There is a set (L ′
(i,α))(i,α) of bounded

operators in B(h) that satisfy the relation (ii) of Theorem 2.4. That is, there is a self-
adjoint unitary matrix U = (u(i,α)(j,β)) on k such that

L ′T
(i,α) =

∑

(j,β)

u(i,α)(j,β)L
′
(j,fi). (6.1)

On the other hand, by condition (2.1), there is a unitary V = (v(i,α)(j,β)) on k such
that

L(i,α) =
∑

(j,β)

v(i,α)(j,β)L
′
(j,fi). (6.2)

Combining (6.1) and (6.2), we see that

LT
(i,α) =

∑

(j,β)

(VUV ∗)(i,α)(j,β)L(j,fi),

andVUV ∗ is a self-adjoint unitarymatrix on k.We already know, however, the relation

LT
(i,α) =

∑

(j,β)

w′
(i,α)(j,β)L(j,fi),

where w′
(i,α)(j,β) = w′

αδi+θ̂ (eα),jδ−α,β with (w′
1, w

′−1, w
′
2, w

′−2) = (μ−1, μ, ν−1, ν).
In order that the matrix W ′ = (w′

(i,α)(j,β)) to be a self-adjoint unitary (as it is for

VUV ∗) it must hold that μ−1 = μ and ν−1 = ν, equivalently |μ| = |ν| = 1. The
proof is completed. ��

Theorem 6.2 Let T be a QMS associated with OQW on a torus with a generator in
(4.18). Then, the entropy production is zero if and only if T satisfies SQDB-�.

Proof FromTheorem 4.7, we see that the entropy production of the QMS is zero if and
only if pμ = qμ = 1/2 and pν = qν = 1/2. On the other hand the latter conditions
are equivalent to |μ| = |ν| = 1. The result follows from Lemma 6.1. ��

The above result also holds for the model on the cycle as well as it can be extended
to multi-dimensional integer lattices.
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6.2 QMS associated with OQW on a hexagonal torus

Recall that the generator of the model is given in (5.7). As in the model on a torus, we
have the following characterization.

Lemma 6.3 Let T be a QMS associated with OQW on the hexagonal torus with a
generator in (5.7). Then, T satisfies SQDB-� if and only if the parameters μ, ν, and
η in (5.1) satisfy |μ| = |ν| = |η| = 1.

Proof One can show this lemma by the similar methods used in the proof of Lemma
6.1. ��

We would like to see the relationship between no-existence of entropy production
and SQDB-�. Notice that for this model, as we have seen in Sect. 5, the values of
entropy production differ case by case. So, here we also consider each case separately.

Case 1: tr(W ∗WT) = 0.
In this case the entropy production formula is given by Theorem 5.4. The formula
says that the entropy production is equal to zero if and only if the parameters μ, ν, η

in (5.1) satisfy |μ| = |ν| = |η| = 1. Together with Lemma 6.3, we conclude that the
entropy production is zero if and only if the SQDB-� holds.

Case 2: 0 �= |tr(W ∗WT)| = tr(W ∗W ).
In this case, the entropy production is given by Theorem 5.8. By it, the entropy produc-
tion is zero if and only if |μ| = |ν| = 1, but the value of η may be arbitrary. Therefore,
by Lemma 6.3, we conclude that if the SQDB-� holds, then the entropy production is
zero. However, the converse is not true: we may have zero entropy production while
the SQDB-� fails.

Case 3: 0 �= |tr(W ∗WT)| < tr(W ∗W ).
In this case the entropy production is given by Theorem 5.13. Since pγ �= qγ in the
formula we see that the entropy production is zero if and only if

|μ| = |ν| = 1 and 〈̂ξ(i,e3), ζ̂(i,e3)〉 = 0.

But as the Lemma 6.4 below shows the latter condition is equivalent to |η| = 1.
Therefore, as in the Case 1, we conclude that the entropy production is zero if and
only if the SQDB-� holds.

Lemma 6.4 In the case 0 �= |tr(W ∗WT)| < tr(W ∗W ), we have 〈̂ξ(i,e3), ζ̂(i,e3)〉 = 0 if
and only if |η| = 1.

Proof By Lemma 5.11, 〈̂ξ(i,e3), ζ̂(i,e3)〉 = 0 if and only if

(a+a− + |η|2)tr(W ∗WT) + (a+η + a−η)tr
(
W ∗W

) = 0. (6.3)

From (5.11), we directly compute to see

a+a− = −1 and a+η + a−η = (1 − |η|2)tr(W ∗W
)

tr
(
W ∗WT

) .
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Implementing into (6.3), we conclude

〈̂ξ(i,e3), ζ̂(i,e3)〉 = 0 if and only if (1 − |η|2)(tr(W ∗W
)2 − tr

(
W ∗WT)2

) = 0,

and the result follows since |tr(W ∗WT)| < tr(W ∗W ). ��
Summarizing, we see that the QMS associated with the OQW on the hexagonal

torus has no entropy production if the SQDB-� holds. The converse is true in certain
cases but there is also a case where it is not true. It is worth to notice that such a
phenomenon (zero entropy production without SQDB-�) also occurs in some other
model (see [9, Example 7.3]).
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