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Abstract We consider the support of the limit distribution of the Grover walk on
crystal lattices with the linear scaling. The orbit of the Grover walk is denoted by
the parametric plot of the pseudo-velocity of the Grover walk in the wave space. The
region of the orbit is the support of the limit distribution. In this paper, we compute
the regions of the orbits for the triangular, hexagonal and kagome lattices. We show
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every outer frame of the support is described by an ellipse. The shape of the ellipse
depends only on the realization of the fundamental lattice of the crystal lattice in R

2.

Keywords Grover walks · Crystal lattice · Limit theorem

1 Introduction

The Grover walk is one of the intensively studied mathematical models of quantum
walks. These considerable reasons are as follows: (i) the Grover walk is a useful tool
in the quantum computing accomplishing so-called quantum speedup (see [1] and its
references therein); (ii) there is an underlying random walk which describes a part of
the spectrum of the Grover walk [2,3]; (iii) some stochastic behavior of the underlying
random walk and also geometric aspects of the graph appear in different forms as the
limiting behavior of the induced Grover walk [4,5]; (iv) there is a connection to some
graph theoretical and combinatorial aspects inducing inverse problems to classify
graphs by some Grover walk’s behaviors [6–8]; (v) the Grover walk naturally appears
as the potential-free quantum graph [9], which is a system of the Schrödinger equation
on the metric graph with the boundary conditions at the vertices preserving the self-
adjointness of the Hamiltonian [10].

In this paper, we consider the Grover walk in the context of (iii) restricting the
graphs to three typical crystal lattices; triangular, hexagonal and kagome lattices. In
particular, we study the orbit of the Grover walker linearly scaled by the large time step
n. The Grover walk on these graphs exhibits both localization and linear spreading [2].
It is known that the orbit is described by the parametric plot of the group velocity in the
wave space, and the density corresponding to how frequently the orbit of the Grover
walker runs through each small mesh on R

2 is expressed by the effective mass [11].
We show that the orbit of the Grover walker is included in an ellipse with a rotation
(Theorem 4). The shape of the region depends only on the realization of the embedding
of the fundamental lattice of the crystal lattice in R

2. For the underlying random walk
on the crystal lattices, geometric quantities and the realization of the embedding in R

d

are reflected in the return probability [4,12]. On the other hand, homological structure
is reflected as the localization of the induced Grover walk [2,4,13]. However, it has
been still an open problem to find geometric properties of the graphs from the behavior
of linear spreading of the Grover walk. Although this paper treats the orbits of only
special crystal lattices linearly scaled by large time n, we expect that this is a first
step to address to this open problem of the Grover walk and provide an interest of this
problem.

This paper is organized as follows. In Sect. 2, the definition of the Grover walk on
the connected graph is explained. Section 3 is devoted to a construction of the crystal
lattice from the finite graph and an embedding of the crystal lattice in R

2. In Sect. 4,
we prepare the setting of the Grover walk on the crystal lattice and take a short review
on spectral mapping theorem and the limit theorem of this walk. We define the orbit
of the Grover walk in this section. In Sect. 5, we give our main theorem for the orbits
of the Grover walk on the three crystal lattices and its proof. Finally, we discuss our
conjecture of the orbits and verify it by numerical simulations.
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2 Definition of Grover walk on graph

Let G = (V (G), E(G)) be a graph. We define A(G) as the symmetric arcs induced by
E(G). The inverse arc of e ∈ A(G) is denoted by ē ∈ A(G). We denote o(e), t (e) ∈
V (G) as the origin and terminal vertices of e, respectively. If G is a simple graph, then
the arc e with o(e) = u and t (e) = v is denoted by (u, v). The cycle C is the sequence
of arcs (e0, . . . , er−1) so that t (e j ) = o(e j+1) for every j ∈ Z/Zr . The Grover walk
on graph G is defined as follows.

Definition 1

(1) Total Hilbert space: H = �2(A(G)) = {ψ : A(G) → C | ||ψ ||2 < ∞}. Here the
inner product is the standard inner product, that is, 〈ψ, φ〉 = ∑

e∈A(G) ψ(e)φ(e).
(2) Time evolution: U : H → H (unitary) such that

(Uψ)(e) =
∑

f :o(e)=t ( f )

(
2

deg(o(e))
− δe, f̄

)

ψ( f ).

(3) Finding probability at time n is defined by μ
(ψ0)
n : V (G) → [0, 1] with the initial

state ψ0 ∈ �2(A(G)) (||ψ0|| = 1) such that

μ(ψ0)
n (u) =

∑

e:t (e)=u

|(U nψ0)(e)|2.

3 Crystal lattice and its realization on R
d

Let G0 = (V0, E0) be a finite graph which may have multi-edges and self-loops. We
use the notation A0 := A(G0) for the set of symmetric arcs induced by E0. The homol-
ogy group of G0 with integer coefficients is denoted by H1(G0,Z). The abstract period
lattice L induced by a subgroup H ⊂ H1(G0,Z) is denoted by H1(G0,Z)/H [14].
Conceptual figures of H1(G0,Z), H and L for the base graphs of three-dimensional
square lattice, triangular lattice and hexagonal lattice as G0 are depicted in Fig. 1.

Let the set of basis of H1(G0,Z) be {C1, C2, . . . , Cb1} corresponding to funda-
mental cycles of G0, where b1 is the first Betti number of G0. The spanning tree
induced by {C1, C2, . . . , Cb1} is denoted by T0. The first Betti number b1 is denoted
by b1 = |E0|−|V0|+1. A spanning tree of G0 is a connected subtree of G0 which cov-
ers all the vertices of G0. Since the number of edges of the spanning tree is |V0| − 1,
b1 is reexpressed by b1 = |E(G0)| − |E(T0)| = |E(T0)

c|. Here for a subset Ω ′
of Ω , Ω ′c is the complement of Ω ′, that is, Ω ′c = Ω\Ω ′. Thus, we can take a
one-to-one correspondence between {C1, C2, . . . , Cb1} and E(T0)

c; remaking that
|A(T0)| = 2|E(T0)|, we describe C(e) ∈ {C1, C2, . . . , Cb1} as the fundamental cycle
corresponding to e ∈ A(T0)

c so that C(e) is the cycle generated by adding e ∈ A(T0)
c

to T0. Set φ : A0 → R
d so that

(1) for every e ∈ A0,

φ(ē) = −φ(e);
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Three-dim
square lattice 

G0

C1

, ,
C2 C3

span

C1

, ,
C2 C3
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H1 / HHH1 (G0,  Z)

C1 + C2 + C3 

C1 C2

span ,

Fig. 1 Examples of H1(G0,Z), H and induced L for the base graphs of three-dimensional square lattice,
triangular lattice and hexagonal lattice cases. The three-dimensional square lattice and the hexagonal lattice
are maximal topological crystals, while the triangular lattice is the topological crystal over the three-bouquet
graph obtained by the vanishing subgroup H = Z(C1 + C2 + C3)

(2)

rank[φ(C1), . . . , φ(Cb1)] = d.

Here for a fundamental cycle C j = (e0, . . . , er−1)( j ∈ {1, . . . , b1}), we define

φ(C j ) = φ(e0) + · · · + φ(er−1).

We also set φ0 : V0 → R
d so that

φ(e) = φ0(t (e)) − φ0(o(e))

for every e ∈ A(T0). Thus, the relative coordinate of each vertex of G0 is determined
by φ0. Remark that for every e ∈ A(T0)

c corresponding to the fundamental cycle
C = (e1, . . . , er , e),

φ(e) = φ(C) + {φ0(o(e1)) − φ0(t (er ))} = φ(C) + {φ0(t (e)) − φ0(o(e))}.
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Fig. 2 A realization of the hexagonal lattice. (1) G0 and basis of homology group. (2) A spanning tree T0
of G0, and a relative coordinate of each vertex; as an example, we put φ0(v1) = (−1/4, −1/4), φ0(v2) =
(1/4, 1/4) ∈ R

2. (3) A realization of the period lattice φ(L); as an example, we put φ(C1) = (1, 0),
φ(C2) = (0, 1) ∈ R

2. (4) The realization of the covering graph under the setting of (1)–(3); solid edges
correspond to the spanning tree of G0 and dotted edges correspond to E(T0)c

The covering graph G = (V, A) of G0 by the abstract period lattice L is expressed
as follows, where A is the set of the symmetric arcs:

V = φ(L) + φ0(V0) ∼= φ(L) × φ0(V0);

A =
(

⋃

x∈L

{((x, o(e)), (x, t (e))) | e ∈ A(T0)}
)

∪
(

⋃

x∈L

{
((x, o(e)), (x + φ(C(e)), t (e))) | e ∈ A(T0)

c}
)

.

See Fig. 2, for a realization of hexagonal lattice.

4 Grover walk on the crystal lattice

Let θ̂ : A0 → R
d be

θ̂ (e) =
{

φ(C(e)) : e ∈ A(T0)
c,

0 : e ∈ A(T0).
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It holds θ̂ (ē) = −θ̂ (e). We choose ei1 , . . . , eid from A(T)c so that θ̂1 :=
θ̂ (ei1), . . . , θ̂d := θ̂ (eid ) span R

d . We put the following d × d matrix by

Θ := t ([θ̂1, . . . , θ̂d ]−1).

4.1 Vertex-based operator: twisted isotropic random walk

Set the Hilbert space generated by V = V (G) as �2(V ). Recall that each vertex is
represented by some x ∈ L and u ∈ V0 with x+φ0(u). We shortly express f (x+φ0(u))

by f (x; u). We define the Fourier transform with k ∈ [0, 2π)d := T d by

f̂ (k; u) =
∑

x∈L

f (x; u)ei〈Θk,x〉.

The inverse Fourier transform is expressed by

f (x; u) =
∫

T d
f̂ (k; u) e−i〈Θk,x〉 dk

(2π)d
,

= 1

|Θ|
∫

Θ(T d )

f̂ (Θ−1k; u) e−i〈k,x〉 dk

(2π)d
,

where |Θ| = det(Θ). The random walk operator on G is described by

(P f )(v) =
∑

e∈A:t (e)=v

p(e) f (o(e)),

for every v ∈ V , where p(e) = 1/ deg(o(e)). Putting P̂k : �2(V0) → �2(V0) by

(P̂k f0)(u) =
∑

e∈A0:t (e)=u

p(e) ei〈Θk,θ̂ (e)〉 f0(o(e)),

we have

(Pn f )(x; u) =
∫

T d
P̂n

k f̂ (k; u) e−i〈Θk,x〉 dk

(2π)d

= 1

|Θ|
∫

Θ(T d )

P̂n
Θ−1k f̂ (Θ−1k; u) e−i〈k,x〉 dk

(2π)d
.

Here P̂k acts on f̂ (k; ·) before taking the integration. We call P̂k a twisted random
walk on the quotient graph G0.
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4.2 Arc-based operator: twisted Grover walk

Set the Hilbert space generated by A = A(G) as �2(A). Each arc is represented by
some x ∈ L and e ∈ A0 with (x; e). We define the Fourier transform with k ∈ T d by

ψ̂(k; e) =
∑

x∈L

ψ(x; e)ei〈Θk,x〉.

The inverse Fourier transform is expressed by

ψ(x; e) =
∫

T d
ψ̂(k; e) e−i〈Θk,x〉 dk

(2π)d
,

= 1

|Θ|
∫

Θ(T d )

ψ̂(Θ−1k, u) e−i〈k,x〉 dk

(2π)d
,

where |Θ| = det(Θ). The Grover walk operator on G is described by

(Uψ)(e) =
∑

f ∈A:o(e)=t ( f )

(
2

deg(o(e))
− δē, f

)

ψ( f )

for every e ∈ A. Putting Ûk : �2(A0) → �2(A0) by

(Ûkψ0)(e) =
∑

f ∈A0:t ( f )=o(e)

(
2

deg(o(e))
− δē, f

)

ei〈Θk,θ̂ ( f )〉ψ0( f ),

we have

(U nψ)(x; e) =
∫

T d
Û n

k ψ̂(k; e) e−i〈Θk,x〉 dk

(2π)d

= 1

|Θ|
∫

Θ(T d )

Û n
Θ−1kψ̂(Θ−1k; e) e−i〈k,x〉 dk

(2π)d
.

Here Ûk acts on ψ̂(k; ·) before taking the integration. The unitary operator Ûk is called
a twisted Grover walk operator.

4.3 Via limit distribution

A useful method to get the spectrum of Ûk is obtained by [2].

Theorem 1 [2] (Spectral mapping theorem) Let J (z) = (z+z−1)/2 on the unit circle.
Then we have

σ(Ûk) ⊇ J−1(σ (P̂k)); σ(Ûk)\J−1(σ (P̂k)) ⊆ {±1}.
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Let C ⊂ �2(A0) be the eigenspace which is orthogonal to the eigenspace of
J−1(σ (P̂k)). Then

dim ker(1 − Ûk |C) = b1;

dim ker(1 + Ûk |C) =
{

b1 : G0 is bipartite,

b1 − 1 : G0 is non-bipartite,

where b1 is the first Betti number of G0.

Let μ
(ψ0)
n : A → [0, 1] be the probability measure at the nth iteration of U with the

initial state ψ0 ∈ �2(A) such that

μ(ψ0)
n (x; e0) = |(U nψ0)(x; e0)|2.

Putting e = (x; e0), we take the Fourier transform of μ
(ψ0)
n (· ; e0) for ξ ∈ R

d by

χn(ξ ; e0) :=
∑

x∈L

μ(ψ0)
n (x; e0) ei〈Θξ,x〉.

We have the following useful formula which connects the Fourier transform of the
amplitude ψ̂ and the Fourier transform of the probability χn .

Proposition 1 Let ψ̂n = Û n
k ψ̂0. Then we have

χn(ξ ; e0) =
∫

T d
ψ̂n(k; e0)ψ̂n(k + ξ ; e0)

dk

(2π)d
.

We join {χn(ξ ; e0)}e0∈A0 by

χn(ξ) :=
∑

eo∈A0

χn(ξ ; e0).

This is rewritten by

χn(ξ) =
∫

T d
Tr[Û n

k+ξ ρ
(0)
k,ξ Û−n

k ] dk

(2π)d
,

where the matrix representation of ρ
(0)
k,ξ is (ρ

(0)
k,ξ )e, f = ψ̂0(k + ξ ; e)ψ̂0(k; f ). As the

initial state, we take the mixed state, i.e., ρ
(0)
k,ξ = I|A0|/|A0|. We put the characteristic

function with this initial state by χ
(o)
n .

Theorem 2 [2] Let the eigenvalues of P̂k be {cos γ j (k)}|V0|
j=1 and we assume γ j ∈ C∞.

Then we have

lim
n→∞ χ(o)

n (ξ/n) = 1

|E0|
∫

T d

|V0|∑

j=1

cos(〈ξ,∇γ j (k)〉) dk

(2π)d
+ 2b1 − 1B

2|E0| . (1)
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Here 1B = 1 if G0 is non-bipartite, 1B = 0 if G0 is bipartite.

The existence of the second term of (1), which is independent of ξ , means that
localization exhibits in this quantum walk. In this paper, we focus on the first
term corresponding to the linear spreading of this quantum walk. If Hγ j =
det[(∂2γ j/∂k�∂km)d

�,m=1] �= 0 for almost every k ∈ T d , then by replacing the vari-

able ∇γ j (k) into x ∈ R
d ( j ∈ {1, . . . , |V0|}), the first term of RHS for such a j is

expressed by

∫

x∈Rd
ei〈ξ,x〉ρ j (x)dx

Here γ j (k) is decomposed into γ j,1(k) + γ j,2(k) + · · · + γ j,κ (k) so that for each
�, ∇γ j,�(k) is in one-to-one correspondence with x and ρ j is given by ρ j =∑

�(|Hγ j |−1)|∇γ j,�(k)=x .

5 Orbit of the quantum walk

Let the eigenvalues of the underlying twisted random walk be denoted by {γ j (k)}|V0|
j=1

with Θ = Id . We define the orbit of the quantum walk by

Ω =
|V0|⋃

j=1

Ω j ⊂ R
d ,

where

Ω j := {∇γ j (k) | k ∈ T d}.

If we take the embedding of L by L = {n1θ̂1 +· · ·+nd θ̂d | n1, . . . , nd ∈ Z}, then the
support of the continuous limit density function of the quantum walk ρ j is expressed
by using d × d basis transformation matrix Θ̃ := [θ̂1, . . . , θ̂d ] = t (Θ−1) as

supp(ρ) = Θ̃(Ω).

Theorem 3 [2] Let G be the d-dimensional lattice. Then we have

Ω ⊆ {x ∈ R
d | ||x ||2 ≤ 1/d}.

In this paper, we newly obtain the orbits of the following crystal lattices.

Theorem 4 Let G ∈ {triangular lattice, hexagonal lattice, kagome lattice} and ΩG

be the orbit of Grover walk on G. Then we have

ΩG ⊆ {(x, y) ∈ R
2 | x2 + s(G)xy + y2 ≤ r(G)}.
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triangular
lattice

hexagonal
lattice

kagome
lattice

Fig. 3 The quotient graphs and realizations with θ̂1 = t [1, 0], θ̂2 = t [0, 1]

Here

r(G) =

⎧
⎪⎨

⎪⎩

1/2 : G is the triangular lattice,

1/6 : G is the hexagonal lattice,

1/4 : G is the kagome lattice,

and

s(G) =

⎧
⎪⎨

⎪⎩

−1 : G is the triangular lattice,

+1 : G is the hexagonal lattice,

+1 : G is the kagome lattice.

See Fig. 3 for the realizations of the above graphs on R
2 in the case of Θ̃ = I2,

where I2 is the two-dimensional identity matrix.

Corollary 1 If we embed the above three lattices in R
2 with the harmonic realiza-

tion [14] so that each Euclidean length of edge is unit, then

Ω ⊆ {x ∈ R
2 | ||x ||2 ≤ 1/2}.

Remark 1 The opposite inclusion, that is,

Ω ⊇ {(x, y) ∈ R
2 | x2 + s(G)xy + y2 ≤ r(G)}

is an open problem except the G = Z
2 case. We discuss it in the final section.
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5.1 The triangular lattice case

Proof The twisted random walk with Θ̃ = I2 on the quotient graph of the triangular
lattice is

P̂k = 1

3
(cos k1 + cos k2 + cos(k1 + k2)).

Thus, its spectrum is

σ(P̂k) = 1

3
(cos k1 + cos k2 + cos(k1 + k2)) = cos γ (k1, k2).

Then we have

x = ∂γ

∂k1
= sin k1 + sin(k1 + k2)

3 sin γ (k)
, y = ∂γ

∂k2
= sin k2 + sin(k1 + k2)

3 sin γ (k)
. (2)

We take the −π/4 rotation as

u = x + y√
2

, v = −x + y√
2

.

Thus,

u = sin k1 + sin k2 + 2 sin(k1 + k2)

3
√

2 sin γ
, v = − sin k1 + sin k2

3
√

2 sin γ
. (3)

Our target is to show

Ω ′ = {(u, v) | k1, k2 ∈ T } = {(u, v) ∈ R
2 | u2 + 3v2 ≤ 1}.

We divide this proof into three steps as follows.

Lemma 1

{(u, v) ∈ R
2 | u2 + 3v2 = 1} ⊂ Ω ′;

Lemma 2

{(u, v) ∈ R
2 | u2 + 3v2 ≤ 1} ⊃ Ω ′;

Lemma 3

det(Hγ ) < ∞

for almost every k ∈ T 2.
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Since the density of the limit distribution is expressed by the inverse of det(Hγ ),
Lemma 3 means the limit distribution takes positive values for almost every (x, y) ∈
Ω . ��
Proof of Lemma 1 When we take (k1, k2) = 0, then both the numerator and the
denominator of u are 0 and so are those for v. Then let us consider k1, k2 � 1.
Using the expansion of sin k j ∼ k j and cos k j ∼ 1 − k2

j /2 and taking r = k2/k1, (3)
is expressed by

u ∼ ± 3 + 3r√
12

√
1 + r + r2

:= ũ±(r), v ∼ ± −1 + r√
12

√
1 + r + r2

:= ṽ±(r). (4)

It is easy to check that

ũ±(r)2 + 3ṽ±(r)2 = 1.

We have

{ũ±(r) | r ∈ R} = [−1, 1], {ṽ±(r) | r ∈ R} = [−1/
√

3, 1/
√

3].

Then the orbit of (ũ, ṽ) draws this ellipse, which completes the proof. ��
Proof of Lemma 2 We put s1 = sin k1, s2 = sin k2, c1 = cos k1, c2 = cos k2, s12 =
sin(k1 + k2), c12 = cos(k1 + k2) and c = cos γ , s = sin γ . Now our target becomes
to show (

s1 + s2 + 2s12

3
√

2s

)2

+ 3

(−s1 + s2

3
√

2s

)2

≤ 1 (5)

We repeat equivalent transformations of (5) as follows.

(5) ⇔ (s1 + s2 + 2s12)
2 + 3(−s1 + s2) − 18 + 2(c1 + c2 + c12)

2 ≤ 0

⇔ −12 + 2s2
1 + 2s2

2 + 2s2
12 − 4s1s2 + 4c1c2 + 4s1s12 + 4c1c12 + 4s2s12

+ 4c2c12 ≤ 0

⇔ −12 + 2(s2
1 + s2

2 + s2
12) + 4(c1c2 − s1s2) + 4(c1c12 + s1s12)

+ 4(c2c12 + s2s12) ≤ 0

⇔ −6 − 2(c2
1 + c2

2 + c2
12) + 4(c12 + c1 + c2) ≤ 0

⇔ −2{(1 − c1)
2 + (1 − c2)

2 + (1 − c12)
2} ≤ 0

This completes the proof. ��
Proof of Lemma 3 The determinant of Hγ is expressed by using x and y in (2)

det(Hγ ) = (c1 + c12 − 3cx2)(c2 + c12 − 3cy2) − (c12 − 3cxy)2

9s2 .
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It is obvious that the numerator of RHS is bounded. Thus, only the case for s = 0 has
the possibility to provide det(Hγ ) = ∞.

s = sin γ = 0 ⇔ cos γ = ±1

⇔ 1

3
(cos k1 + cos k2 + cos(k1 + k2)) = ±1

⇔ k1 = k2 = 0.

Thus, the candidate of the place on R
d which produces 0 as the value of the limit

density function is on the ellipse. The Lebesgue measure of such a point is zero,
which implies the conclusion. ��

5.2 The hexagonal graph case

The twisted random walk Θ̃ = I2 on the quotient graph of the hexagonal lattice is

P̂k =
[

0 1
3 (e−ik1 + e−ik2 + 1)

1
3 (eik1 + eik2 + 1) 0

]

.

Thus, its spectrum is

σ(P̂k) = ±1

3
|1 + eik1 + eik2 | = cos γhex(k1, k2).

We put γ (k1, k2) =: γhex. Then we have

x = ∂γhex

∂k1
= 2

9

sin k1 + sin(k1 − k2)

sin 2γhex
, y = ∂γhex

∂k2
= 2

9

sin k2 + sin(k2 − k1)

sin 2γhex
. (6)

We take the π/4 rotation as

uhex = x − y√
2

, vhex = x + y√
2

.

Thus,

uhex =
√

2

9

sin k1 − sin k2 + 2 sin(k1 − k2)

sin 2γhex
, vhex =

√
2

9

sin k1 + sin k2

sin 2γhex
. (7)

Now our target becomes to show

Ω ′
hex = {(uhex, vhex) | (k1, k2) ∈ T 2} = {(u, v) ∈ R

2 | 3u2 + 9v2 ≤ 1}.

Lemma 4

{(u, v) ∈ R
2 | 3u2 + 9v2 = 1} ⊂ Ω ′

hex;
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Lemma 5

{(u, v) ∈ R
2 | 3u2 + 9v2 ≤ 1} ⊃ Ω ′

hex;

Lemma 6

det(Hγhex) < ∞

for almost every k ∈ T 2.

Proof of Lemma 4 When we take (k1, k2) = 0, then both the numerator and the
denominator of u are 0 and also so are those of v. Then let us consider the case
k1, k2 � 1. Using the expansion of sin k j ∼ k j and cos k j ∼ 1 − k2

j /2 and taking
r = k2/k1, (7) is expressed by

uhex ∼ ± 1 − r

2
√

1 − r + r2
: = ũ±(r),

vhex ∼ ± 1 + r

6
√

1 − r + r2
: = ṽ±(r). (8)

It is easy to check that
ũ±(r)2 + 3ṽ±(r)2 = 1/3. (9)

We have

{ũ±(r) | r ∈ R} = [−1/
√

3, 1/
√

3], {ṽ±(r) | r ∈ R} = [−1/3, 1/3].

Then the orbit of (ũ, ṽ) draws this ellipse, which completes the proof. ��
Proof of Lemma 5 We put s1 = sin k1, s2 = sin k2, s12 = sin(k1−k2), c12 = cos(k1−
k2) and c = cos γhex, s = sin γhex. Our target is to show

3

(√
2(s1 − s2 + 2s12)

18sc

)2

+ 9

(√
2(s1 + s2)

18sc

)2

≤ 1. (10)

We repeat equivalent transformations of (10) as follows.

(10) ⇔ (s1 − s2 + 2s12)
2 + 3(s1 + s2)

2 ≤ 54(sc)2

⇔ 3(s1 − s2 + 2s12)
2 + 9(s1 + s2)

2

≤ 4(3 − (c1 + c2 + c12))(3 + 2(c1 + c2 + c12))

⇔ s2
1 + s2

2 + s2
12 + (c1c2 + c2c12 + c12c1) − 3 ≤ 0

⇔ −(c2
1 + c2

2 + c2
12) + 1

2
((c1 + c2 + c12)

2 − (c2
1 + c2

2 + c2
12)) ≤ 0

⇔ (c1 + c2 + c12)
2 − 3(c2

1 + c2
2 + c2

12) ≤ 0.
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The Cauchy–Schwarz inequality implies the final inequality. It completes the proof.
��

Proof of Lemma 6 Notice that ∂ sin 2γhex/∂k j < ∞ for ( j = 1, 2) by the above dis-
cussion. Therefore, the determinant of Hγhex is expressed by using a bounded function
h(k1, k2) as

det(Hγhex) = h(k1, k2)

sin4 2γhex
.

Only the case for sin 2γhex = 0 has a possibility to provide det(Hγ ) = ∞. Such points
on T 2 are

{(2π/3,−2π/3), (−2π/3, 2π/3), (0, 0)}.

We have already examined the last case (0, 0); the corresponding orbit on R
2 is the

ellipse after the π/4 rotation (9). The corresponding first and the second orbits with
the π/4 rotation on R2 are obtained in the same way as the (0, 0) case: the orbits are
obtained by

{(u, v) | u2 + 3v2 = 1/6}.

Therefore, the places on {(u, v) ∈ R
2 | u2 + 3v2 ≤ 1/3} where the value of the

density may take zero is described by

{(u, v) | u2 + 3v2 = 1/6 or 1/3}.

The Lebesgue measure of the above set is zero. It completes the proof. ��

5.3 The kagome lattice case

The kagome lattice is the line graph of the hexagonal lattice. The transition matrix
of the isotropic random walk on a graph H is denoted by P(H). We introduce the
following well-known lemma.

Lemma 7 Assume H is a κ-regular graph. Let L(H) be the line graph of H. Then
we have

σ(P(L(H))) = ϕ(σ(P(H))) ∪
{ −1

κ − 1

}

,

where ϕ(x) = 1
2(κ−1)

(κx +κ−2). Here the dimension of the eigenspace of −1/(κ−1)

is |E(H)| − |V (H)|.
Thus, the spectrum of the twisted random walk Θ̃ = I2 on the kagome lattice is
described by

σ0,kag :=
{

1

4
(1 ± |1 + eik1 + eik2 |)

}

∪
{

−1

2

}

(11)
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We define cos γkag := (1/4) + (3/4) cos γhex ∈ σ0,kag . Then we have

∂γkag

∂k1
= g(k1, k2)

∂γhex

∂k1
,

∂γkag

∂k2
= g(k1, k2)

∂γhex

∂k2
,

where

g(k1, k2) := 3

4

sin γhex

sin γkag
= √

3

√
1 + cos γhex

5 + 3 cos γhex
.

Taking the π/4 rotation, we have

ukag = g(k1, k2)uhex, vkag = g(k1, k2)vhex. (12)

Remark that 0 ≤ g(k1, k2) ≤ g(0, 0) = √
3/2. Therefore, using the previous fact on

the hexagonal lattice, we have

u2
kag + 3v2

kag ≤ 1/4.

The equality holds if and only if (k1, k2) = (0, 0). When k1, k2 � 1 with k1/k2 = r ,
then g(k1, k2) = √

3/2 + O(||(k1, k2)||). Therefore, we have

{(u, v) | u2 + 3v2 = 1/4} ⊂ Ω ′
kag ⊂ {(u, v) | u2 + 3v2 ≤ 1/4}.

The determinant of Hγkag is also expressed by using a bounded function s(k1, k2) as

det(Hγkag) = s(k1, k2)

(5 + 3 cos2 γhex) sin4 2γhex
.

Only the case for sin 2γhex = 0 has a possibility of det(Hγkag) = ∞. Thus, we can use
the argument for the previous hexagonal lattice case. It completes the proof. ��

6 Summary and discussion

We obtained the outer frames of the orbits of the Grover walker on some crystal
lattices. We have shown that every orbit only depends on the embedding way of the
fundamental lattices L = span{θ̂1, θ̂2} in R

2. If we choose the embedding way so that
θ̂1 = t [1, 0], θ̂2 = t [0, 1], the outside frames are described by an ellipse. With the
±π/4 rotations, the orbits are expressed by
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Fig. 4 Triangular and kagome
lattices as the dual and line
graphs of hexagonal lattice

1/ 3

1/2
1

Ω ′
tri ⊆ {(u, v) ∈ R

2 | u2 + 3v2 ≤ r2
tri},

Ω ′
hex ⊆ {(u, v) ∈ R

2 | u2 + 3v2 ≤ r2
hex},

Ω ′
kag ⊆ {(u, v) ∈ R

2 | u2 + 3v2 ≤ r2
kag},

where rtri = 1, rhex = 1/
√

3 and rkag = 1/2. When we take the harmonic realization
to the hexagonal lattice whose Euclid edge length is rhex and take dual graph and line
graph to this embedding, we obtain triangular lattice and kagome lattice, respectively.
The Euclidean edge length of them is rtri and rkag, respectively; see Fig. 4.

The natural question may arise about the interior. We have the following conjecture.

Conjecture 1 Let G ∈ {triangular lattice, hexagonal lattice, kagome lattice} and ΩG

be the orbit of Grover walk on G. Then we have

ΩG = {(x, y) ∈ R
2 | x2 + s(G)xy + y2 ≤ r(G)}.

The orbit Ω ′
G after s(G)π/4 rotation is expressed by

Ω ′
G = {(u(k1, k2), v(k1, k2)) | k1, k2 ∈ [0, 2π)},

where u, v : [0, 2π)2 → R are given by (3) for “G = triangular lattice”, (7) for “G =
hexagonal lattice”, and (12) for “G = kagome lattice”. Figures 5, 6 and 7 depict the
subregions of Ω ′

G numerically, which is the basis of our conjecture:

Ωr = {(u(k, rk), v(k, rk)) | k ∈ [0, 2π)} ⊂ Ω ′
G

for r = 0, 3, 10, 50, 100 cases. Note that r corresponds to the pitch winding the torus
T 2, that is, the larger the pitch r is, the more places of T 2 “(k, rk)” visits.
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Fig. 5 The orbits of Ω ′
r for the triangular lattice case by numerical simulation (r = 0, 3, 10, 50, 100)
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Fig. 6 The orbits of Ω ′
r for the hexagonal lattice case by numerical simulation (r = 0, 3, 10, 50, 100)
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Fig. 7 The orbits of Ω ′
r for the kagome lattice case by numerical simulation (r = 0, 3, 10, 50, 100)
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