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Abstract
In this paper we construct (nonhomogeneous) quantumMarkov chains associated with open
quantum random walks. The quantum Markov chain, like the classical Markov chain, is a
fundamental tool for the investigation of the basic properties of the underlying dynamics
such as reducibility/irreducibility, recurrence/transience, accessibility, ergodicity, etc. So,
the quantum Markov chain machinery opens many new features of the dynamics. On the
other hand, as will be shown in this paper, the open quantum random walks serves as a very
interesting nontrivial model for which one can construct the associated quantum Markov
chains. Here, after constructing the quantumMarkov chain associated with the open quantum
random walks, we focus on the discussion of the reducibility and irreducibility of open
quantum randomwalks via the corresponding quantumMarkov chains. Particularly we show
that the concept of reducibility/irreducibility of open quantum randomwalks in this approach
is equivalent to the one previously done by Carbone and Pautrat. We provide with some
examples. We see also that the classical Markov chains can be reconstructed as quantum
Markov chains.
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1 Introduction

The purpose of this paper is to construct the quantum Markov chains (QMCs hereafter)
associated with the open quantum random walks (OQRWs) and investigate some interesting
properties. Here we focus on the reducibility and irreducibility of QMCs for OQRWs.

The OQRWswere introduced by Attal et al. in [1–3] to model the quantum randomwalks.
In particular, the OQRWs were developed to formulate the dissipative quantum computing
algorithms and dissipative quantum state preparation. In that paper the authors introduced the
concept of quantum trajectories. This is a repeated process of completely positive mapping
on a state (an evolution of OQRW, see the next section for the detail) and a measurement of
the position. By this they constructed a (classical) Markov chain. Using this Markov chain,
Attal et al. established a central limit theorem for the asymptotic behavior of the OQRWs
[1].

Recently the dynamical behavior of OQRWs drew many interests and some works have
been done for the ergodicity, hitting times, recurrence, reducibility, etc, of OQRWs [4–7].
In [5], Dhahri and Mukhamedov constructed the QMCs for the OQRWs and investigated
recurrence and accessibility. The approach by the QMCs for some (quantum) dynamical
systems serves as a fundamental and strong tool in the investigation of further properties
of the underlying dynamics. Otherwise, it would be hard to understand the properties as
much as done by the method. As we will see in the sequel, the reducibility and irreducibility
properties of OQRWs can be successfully treated, though this property itself has been studied
without appealing to the QMCs [4]. We emphasize, however, that many further properties of
the dynamics can be shown if we follow the QMC approach [5].

On the other hand the QMC was introduced by Accardi [8–10] and further developed
[11,12], and has found several applications. See e.g., [13–17] and references therein. Here
the model of OQRWs is a nontrivial dynamical system to which the QMC approach can be
applied. Themain ingredient for the QMC is the transition expectation, which is a completely
positive map and it is a quantum version of the transition matrix for the classical Markov
chains [11,12]. See Sect. 3 for the details. Accardi and Koroliuk, after defining the QMC,
developed the quantum versions of reducibility and irreducibility, accessibility, recurrence
and transience [11,12]. In this paper we adopt the construction of QMCs for OQRWs intro-
duced in [5] with some modifications. A remarkable point in our construction is that we
have introduced the sub-Markovian transition expectations, contrasting to the fact that it is
generally required to have Markovianity for the transition expectations. The Markovianity is
recovered when we talk together with the initial conditions and the transition expectations. It
seems that this approach is necessary when we try to recover the original dynamics. Another
typical notice in our construction is that we have considered the nonhomogeneous quantum
Markov chains instead of homogeneous ones. This is also necessary to recover the original
dynamics unless we start with an initial state which is invariant under the dynamics. After
constructing the QMCs associated with OQRWs, we study the reducibility and irreducibility
of the OQRWs in the language of the constructed QMCs. We give some sufficient conditions
for reducibility/irreducibility providing with some examples. We separately show that the
classical Markov chains are reconstructed by the quantum Markov chains and the classical
reducibility/irreducibility can be studied by the language of QMCs.

Let us briefly overview the contents of this paper. In Sect. 2, we recall the definition of
OQRWs as defined in [2]. Section 3 summarizes the construction of QMCs. Section 4 is the
main part of this paper. We construct the nonhomogeneous QMCs associated with OQRWs
using (sub-Markovian) transition expectations. We then develop a characterization for the
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1274 A. Dhahri et al.

reducibility/irreducibility (Theorem 4.12) and give some sufficient conditions for reducibility
(Theorem 4.13) and irreducibility (Theorem 4.15). Section 5 is devoted to the examples. We
construct some examples of reducible and irreducible OQRWs in 1-dimensional integer lat-
tice. We also investigate the relation with classical Markov chains. In Sect. 5.2 we construct a
QMC for a given classicalMarkov chain.We show that our construction is natural in the sense
that it realizes the original classical Markov chain.We then compare the reducibility and irre-
ducibility properties viewed in quantumand classicalMarkov chains. Finally, in theAppendix
we compare with the previous results on the reducibility/irreducibility for OQRWs studied
by Carbone and Pautrat [4]. In fact, it turns out that the concepts of reducibility/irreducibility
of OQRWs given in [4] and in the present paper are equivalent.

2 Open Quantum RandomWalks

In this section we briefly introduce the open quantum random walks.
Let K be a separable Hilbert space with an orthonormal basis {|i〉}i∈� indexed by the

vertices of some graph �. Here the set � of vertices may be finite or countably infinite. Let
H be another separable Hilbert space, which will describe the degrees of freedom given at
each point of �. We consider the space H ⊗ K.

For each pair i, j ∈ � we give a bounded linear operator Bi
j on H. This operator stands

for the effect of passing from j to i . We assume that for each j
∑

i

Bi
j
∗
Bi
j = I , (2.1)

where the series is strongly convergent to the identity operator I . This constraint means that
the sum of all the effects leaving site j is I . We dilate the operators Bi

j onH as operators on
H ⊗ K by defining

Mi
j = Bi

j ⊗ |i〉〈 j |.
The operators Mi

j encodes exactly the idea that while passing from j to i on the space, the

effect is the operator Bi
j on H. By (2.1), it is easy to see that

∑

i, j

Mi
j
∗
Mi

j = I . (2.2)

Using the operators {Mi
j }i, j , define a completely positive map on I1(H ⊗ K), the ideal of

trace class operators, by:
M(ρ) =

∑

i

∑

j

Mi
jρM

i
j
∗
. (2.3)

We consider density matrices on H ⊗ K of the particular form

ρ =
∑

i

ρi ⊗ |i〉〈i |,

where for each i ∈ �, ρi is a positive definite trace class operator and satisfies
∑

i Tr(ρi ) = 1.
For a given initial state of such form, the OQRW is defined by the completely positive map
M:

M(ρ) =
∑

i

⎛

⎝
∑

j

Bi
jρ j B

i
j
∗
⎞

⎠⊗ |i〉〈i |. (2.4)
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Hence a measurement of the position inK would give a probability
∑

j Tr(B
i
jρ j Bi

j
∗
) to find

out the particle at site i . The OQRW is a repeated operation of the completely positive map
M. The two-step evolution, for instance, is of the form

M2(ρ) =
∑

i

∑

j

∑

k

Bi
j B

j
k ρk B

j
k

∗
Bi
j
∗ ⊗ |i〉〈i |.

3 QuantumMarkov Chains

In this section we briefly recall the definitions of quantum Markov chains [5,11,12,18] and
(ir)reducibility [11,12].

3.1 QuantumMarkov Chains

Let Z+ be the set of all nonnegative integers. Let B be a von Neumann subalgebra of B(h),
the space of all bounded linear operators on a separable Hilbert space h. For any bounded
� ⊂ Z+, let

A� :=
⊗

i∈�

Ai , Ai = B, (3.1)

be the finite tensor product of von Neumann algebras and

A :=
⊗

i∈Z+
Ai (3.2)

be the infinite tensor product of von Neumann algebras [19,20]. Here we adopt the definition
of infinite tensor product of von Neumann algebras introduced in Ref. [19]. For each i ∈ Z+,
let Ji be the embedding homomorphism

Ji : B ↪→ I0 ⊗ I1 ⊗ · · · ⊗ Ii−1 ⊗ B ⊗ Ii+1 ⊗ · · · =: Ii−1] ⊗ B ⊗ I[i+1

defined by

Ji (a) = Ii−1] ⊗ a ⊗ I[i+1, ∀a ∈ B.

For each � ⊂ Z+, we identify A� as a subalgebra of A. We denote An] the subalgebra of
A, generated by the first (n + 1) factors, i.e., by the elements of the form

an] = a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ I[n+1 = J0(a0)J1(a1) · · · Jn(an)
with a0, a1, . . . , an ∈ B.

A bilinear map E from B ⊗ B to B is called a transition expectation if it is completely
positive and sub-Markovian in the sense that [21]

E(I ⊗ I ) ≤ I . (3.3)

Remark 3.1 In the literature, it is required in general theMarkovian property, i.e., E(I ⊗ I ) =
I , to define quantumMarkov chains. The sub-Markovian condition (3.3) is definitely weaker
than the Markovian condition. We emphasize, however, that when we apply the QMCs
to special models, like the OQRWs of the present model, it is generally required to use
sub-Markovian transition expectations in order to properly recover the original dynamics.
Nonetheless, as will be seen in Definition 3.5, since the QMCs are always defined by a pair of
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1276 A. Dhahri et al.

initial states and transition expectations, we have a room to recover the Markovian property,
and this really works in the present model. We therefore impose theMarkovian property only
when we speak together with initial states and transition expectations.

Let us now introduce the QMCs. Given a sequence of normal transition expectations
(E(n))n≥0, for each m ≥ 0 we first define a (unique) completely positive, sub-Markovian
map Em] : A → Am]. Since we have sub-Markovian transition expectations in general, we
need some auxiliary preparation.

Remark 3.2 The normality of the transition expectations is specially needed in order to prop-
erly construct the QMCs from the sub-Markovian transition expectations as will be seen
below. The transition expectations for the OQRWs discussed in this paper, however, satisfy
the normality from the definition. See Definition 4.2. In the sequel, it is therefore tacitly
assumed that the transition expectations are normal.

Lemma 3.3 For each n ≥ 0, there exists a (unique) nonnegative element, denoted by b(n) ∈
B, such that b(n) ≤ I and

lim
k→∞ E(n)(I ⊗ E(n+1)(I ⊗ · · · ⊗ E(n+k)(I ⊗ I ))) = b(n).

In the case that the transition expectations (E(n))n≥0 are Markovian, b(n) = I .

Proof The second statement is trivial. Define a(n)
k := E(n)(I ⊗ E(n+1)(I ⊗ · · · ⊗ E(n+k)(I ⊗

I ))). By (3.3), {a(n)
k }k≥0 is a sequence of positive decreasing operators on B. Hence by

Vigier’s Theorem [22] it strongly converges to a nonnegative element, say b(n) ∈ B. �
In order to define Em] : A → Am], first for an element an] = a0 ⊗ · · · ⊗ an ⊗ I[n+1 ∈ An],
n ≥ m, we define

Em](an]) := a0 ⊗ · · · ⊗ am−1 ⊗ E(m)(am ⊗ E(m+1)(am+1 ⊗ · · ·
⊗ E(n) (an ⊗ b(n + 1)))). (3.4)

And for a = a0 ⊗ a1 ⊗ · · · ∈ A, we let

Em](a) := lim
n→∞ Em](an]). (3.5)

See [8–10,21]. More precisely, the existence of the limit (3.5) can be shown by the following
argument.

Lemma 3.4 For any a ∈ A, and m ≥ 0, the limit (3.5) is well defined and Em] is completely
positive.

Proof Recall that the infinite tensor product A of von Neumann algebras is in the sense
introduced in [19]. For any a ∈ A, by definition, a = a0 ⊗ a1 ⊗ · · · is the weak limit of the
sequence

an] = a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ I[n+1.

Define for each n ≥ m ≥ 0,

E (n)
m] (a) := Em](an]), a ∈ A.

It is clear that for each fixedm ≥ 0, as a finite composition of completely positive maps, E (n)
m]

is completely positive for all n ≥ m. By (3.3) (see also Lemma 3.3), we see that the sequence
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(E (n)
m] )n≥m is weakly convergent. Therefore, the limit (3.5) is well defined, and as a weak

limit of completely positive maps, Em] is also completely positive (see [23, Proposition
2.15]). Finally we show that Em] is consistently well defined. Namely, for example, for
a = a0 ⊗ a1 ⊗ I[2 = a0 ⊗ a1 ⊗ I ⊗ I[3, we must have the equality

E0](a) = E(0)
(
a0 ⊗ E(1) (a1 ⊗ b(2)

)) = E(0)
(
a0 ⊗ E(1)

(
a1 ⊗ E(2) (I ⊗ b(3)

)))
.

By definition of b(n) in Lemma 3.2 and the normality of E(n)(·, ·), we can show b(2) =
E(2)(I ⊗ b(3)), and the above equality holds. In fact,

b(2) = lim
k→∞ E(2)

(
I ⊗ E(3)

(
I ⊗ E(4)

(
I ⊗ · · · ⊗ E(k)(I ⊗ I )

)))

= E(2)
(
I ⊗ lim

k→∞ E(3)
(
I ⊗ E(4)

(
I ⊗ · · · ⊗ E(k)(I ⊗ I )

)))

= E(2)(I ⊗ b(3)).

The proof is completed. �
Suppose that a sequence of transition expectations (E(n))n≥0 and a state φ0 on B are given.

We define a positive definite functional φ on A by

φ(a) := φ0(E0](a)), a ∈ A. (3.6)

Notice that by (3.3) and Lemma 3.3, and from the definition of E0] in (3.4) and (3.5), φ is
sub-Markovian, meaning that φ(I ⊗ I ⊗ · · · ) ≤ 1.

Definition 3.5 (i) A pair
(
φ0, (E(n))n≥0

)
of a state φ0 on B and a sequence of transition

expectations (E(n))n≥0 is called a Markov pair if the positive definite functional φ in
(3.6) defines a state on A, i.e., it is Markovian in the sense that

φ(I ⊗ I ⊗ · · · ) = 1.

(ii) A Markov pair
(
φ0, (E(n))n≥0

)
, or alternatively the state φ in (3.6) defined by the pair, is

called a nonhomogeneous QMC with initial state φ0. When E(n) = E for all n, we say
that the QMC is homogeneous.

Remark 3.6 The state φ in the Definition 3.5 was called a generalized Markov chain in [21].

We introduce a typical way of defining the transition expectations [21,24]. Denote by Tri ,
i = 1, 2 the partial traces on B ⊗ B defined by

Tr1(a ⊗ b) = Tr(a)b, Tr2(a ⊗ b) = Tr(b)a.

Let {Ki }i∈Z+ be a set of Hilbert-Schmidt operators on B ⊗ B satisfying
∑

i

‖Ki‖2 < ∞ and
∑

i

Tr2(Ki K
∗
i ) ≤ I . (3.7)

Then a transition expectation is defined by [21,24]

E(a) :=
∑

i

Tr2(KiaK
∗
i ), a ∈ B ⊗ B. (3.8)

In this paper, the transition expectations of the type in (3.8) with suitably chosen operators
{Ki } will play a central role. We notice that in the literature, the equality was required in
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1278 A. Dhahri et al.

Eq. (3.7) to define transition expectations satisfying the equality in (3.3). By relaxing it to
an inequality as above, it will define a transition expectation which is sub-Markovian in the
sense of (3.3). In the applications, like in the present model, the sub-Markovian property is
natural. We remark also that Park and Shin computed the dynamical entropy of generalized
QMC constructed by transition expectations of the type in (3.8) [25,26].

3.2 Reducible and Irreducible QMCs

In this subsection, we discuss the reducibility and irreducibility of QMCs.
We introduce the notion of the reducibility of QMC [11,12]. Given a projection p ∈ B

and any n ∈ Z+, we denote

p[n := I ⊗ I ⊗ · · · I ⊗ nth
p ⊗ p ⊗ · · · ∈ A. (3.9)

We define a subset of projections in A by

P0 := {p[n : p ∈ B, a projection, n ∈ Z+
}
. (3.10)

Definition 3.7 A quantum Markov chain is called reducible if there exists a nontrivial pro-
jection p ∈ B and n0 ∈ Z+ such that

E0](p[n0ap[n0) = E0](a) (3.11)

for all a ∈ A. Otherwise it is called irreducible. Any projection satisfying (3.11) is called a
reducing projection.

Remark 3.8 In the Refs. [11,12], the reducing projections are allowed to take much more
general form. But here we will confine them to be of the forms in (3.10). It will be turned
out that this is enough.

Theorem 3.9 The QMC is reducible if and only if E0](I − p[n0) = 0 for some nontrivial
projection p[n0 .

Proof In the proof, for notational simplicity we just put p for p[n0 . Suppose that p is a
nontrivial projection such that E0](I− p) = 0. That is, E0](p⊥) = 0. Since E0] is completely
positive, by [23, Proposition 2.10] and using Lemma 3.3, it satisfies a Schwarz inequality:

E0](b)∗E0](b) ≤ ‖E0](I )‖ E0](b∗b) = ‖b(0)‖E0](b∗b) ≤ E0](b∗b).

Therefore,

E0](pap⊥)∗E0](pap⊥) ≤ E0]
(
p⊥a∗ pap⊥) ≤ E0]

(
p⊥a∗ap⊥) ≤ ‖a‖2E0](p⊥) = 0.

Thus E0](pap⊥) = 0 and so E0](p⊥ap) = 0. Similarly we have E0](p⊥ap⊥) = 0. There-
fore we get

E0](a) = E0]
((

p + p⊥)a
(
p + p⊥)) = E0](pap),

for all a ∈ A. This means that the QMC is reducible. The converse trivially holds by taking
a = I . �

123



QuantumMarkov Chains Associated with Open Quantum RandomWalks 1279

4 QuantumMarkov Chains Associated with OQRWs

In this section, we construct QMCs associated with OQRWs. As mentioned in the Intro-
duction, this is a slight modification of the one developed in [5]. We will construct a
nonhomogeneous QMC, but in [5], a homogeneous QMC was considered. We will use
notations from the previous section. In the sequel, we also use the density matrices as also
for states (positive definite functions, in general), i.e., if ρ is a positive definite trace class
operator in B, then for any a ∈ B, we write Tr(ρa) or ρ(a) denoting the same value of the
functional at a. Let us define some notations which will be used in the sequel. For i, j ∈ �,
a path from i to j is any finite sequence i0, i1, . . . , il in � with l ≥ 1, such that i0 = i and
il = j . We denote such a path by π(i0, · · · , il) and let P(i, j) be the set of all paths from i
to j . For π(i0, . . . , il) in P(i, j) we denote by Bπ(i0,...,il ) the operator on H:

Bπ(i0,...,il ) = Bil
il−1

. . . Bi1
i0

= B j
il−1

. . . Bi1
i .

4.1 QMCs for OQRWs

LetM be an OQRW given by (2.3). We fix a density operator ρ(0) ∈ B(H⊗K) of the form

ρ(0) =
∑

i

ρ
(0)
i ⊗ |i〉〈i |,

where ρ
(0)
i ≥ 0 and

∑
i Tr(ρ

(0)
i ) = 1 for all i . For an initial state ρ(0), ρ(n) := Mn(ρ(0)) is

the state at time n. Then we can write

ρ(n) =
∑

i

ρ
(n)
i ⊗ |i〉〈i |. (4.1)

We would like to remind the reader that starting with any initial state, even not of the block-
diagonal form, after the evolution of OQRW the states result in the block-diagonal form as
in (4.1) [2]. Therefore, it is natural and sufficient to consider also the observables of the
block-diagonal form. So, define a subalgebra B0 ⊂ B(H ⊗ K) by

B0 =
{
∑

i∈�

a(i) ⊗ |i〉〈i | : a(i) ∈ B(H) for all i ∈ � and
∑

i

‖a(i)‖ < ∞
}

. (4.2)

Let B be the von Neumann subalgebra of B(H ⊗ K) obtained by a weak closure of B0. We
consider the algebra

A =
⊗

i∈Z+
Ai

where Ai = B for all i ∈ Z+. For each n = 0, 1, 2, . . ., define the following operators

A(n)
i j = 1

Tr(ρ(n)
j )1/2

((ρ
(n)
j )1/2 ⊗ |i〉〈 j |), i, j ∈ �,

K (n)
i j = Mi

j
∗ ⊗ A(n)

i j . (4.3)

Here it is assumed A(n)
i j = 0 if ρ

(n)
j = 0. Notice that by this convention, we can allow any

kind of initial states ρ(0) so that ρ(0)
i might be zero for some i ∈ �. This is important when

we recover the dynamics of OQRW itself by the QMC. See Proposition 4.5.
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Proposition 4.1 For each n = 0, 1, 2, . . .,

Tr2

⎛

⎝
∑

i, j

K (n)
i j K (n)

i j

∗
⎞

⎠ ≤ I

holds.

Proof

Tr2

⎛

⎝
∑

i, j

K (n)
i j K (n)

i j

∗
⎞

⎠ =
∑

j :ρ(n)
j �=0

∑

i

Tr(ρ(n)
j ⊗ |i〉〈i |)
Tr(ρ(n)

j )
Mi

j
∗
Mi

j

=
∑

j :ρ(n)
j �=0

∑

i

Bi
j
∗
Bi
j ⊗ | j〉〈 j |

=
∑

j :ρ(n)
j �=0

IH ⊗ | j〉〈 j | ≤ I .

This proves the assertion. �
By the above proposition we can define transition expectations.

Definition 4.2 (Transition expectations) For each n = 0, 1, 2, . . ., and x, y ∈ B, define

E(n)(x ⊗ y) :=
∑

i, j

Tr2
(
K (n)
i j (y ⊗ x)K (n)

i j

∗)

=
∑

j :ρ(n)
j �=0

∑

i

Tr
(
ρ

(n)
j ⊗ | j〉〈 j |x

)

Tr
(
ρ

(n)
j

) Mi
j
∗
yMi

j . (4.4)

The above transition expectations are of the form in (3.8), but before taking a partial trace
a transposition was applied, leading to the transpose transition expectation E t of [5]. To
say more, one may construct transition expectations by changing the roles of x and y in
(4.4), which gives rise to define a new QMC. But it turns out that the present form is very
convenient when we talk about the dynamics of OQRWs. See, e.g., Proposition 4.5. We also
notice that the transition expectations given by (4.4) are normal. Using the above transition
expectations, we define the completely positive maps Em] : A → Am] by (3.5) and define a
positive definite functional ρ on A like in (3.6):

ρ(a) := ρ(0)(E0](a)), a ∈ A. (4.5)

Before going further, we refine Lemma 3.3 for the present model by showing the following
property. Recall the definition given in Lemma 3.3:

b(n) = lim
k→∞ E(n)

(
I ⊗ E(n+1)

(
I ⊗ · · · ⊗ E(n+k)(I ⊗ I )

))
.

For a state of the form ρ =∑i ρi ⊗ |i〉〈i |, we let �(ρ) := {i ∈ � : ρi �= 0}.
Lemma 4.3 The operators {b(n)}n≥0 for the transition expectations of OQRWs satisfy the
following properties.
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(i) For each n ≥ 0 and j ∈ �(ρ(n)), there exist strictly positive operators b(n, j) ∈ B(H)

such that

b(n) =
∑

j∈�(ρ(n))

b(n, j) ⊗ | j〉〈 j |.

(ii) For each j ∈ �(ρ(n)), it holds that

∑

i∈�(ρ(n+1))

Bi
j
∗
b(n + 1, i)Bi

j = b(n, j).

(iii) For each n ≥ 0 and j ∈ �(ρ(n)),

Tr(ρ(n)
j b(n, j)) = Tr(ρ(n)

j ).

Proof (i) Define a(n)
k := E(n)

(
I ⊗ E(n+1)

(
I ⊗ · · · ⊗ E(n+k)(I ⊗ I )

))
. Then we have b(n) =

limk→∞ a(n)
k . By directly computing with the definition (4.4) we get

E(n+k)(I ⊗ I ) =
∑

j∈�(ρ(n+k))

IH ⊗ | j〉〈 j |.

Applying (4.4) once again, we get

E(n+k−1)
(
I ⊗ E(n+k)(I ⊗ I )

)

=
∑

in+k−1∈�(ρ(n+k−1))

∑

in+k∈�(ρ(n+k))

Bin+k
in+k−1

∗
Bin+k
in+k−1

⊗ |in+k−1〉〈ii+k−1|.

Repeating this procedure, we get

a(n)
k =

∑

in∈�(ρ(n))

b(n)(in; k) ⊗ |in〉〈in |,

where

b(n)(in; k) =
∑

in+1∈�(ρ(n+1))

· · ·
∑

in+k∈�(ρ(n+k))

B∗
π(in ,··· ,in+k )

Bπ(in ,··· ,in+k ).

By the property (2.1) we see that {b(n)(in; k)}k≥1 is a sequence of decreasing positive definite
operators on B. Thus by Vigier’s Theorem [22] again, we see that the sequence converges
strongly to a nonnegative element, say b(n, in) as k → ∞. We thus get

b(n) = lim
k→∞ a(n)

k =
∑

in∈�(ρ(n))

b(n, in) ⊗ |in〉〈in |.

The strict positivity of b(n, j) for j ∈ �(ρ(n)) follows from (iii) whose proof does not use
this property.
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(ii) By the computations in (i), we see that for j ∈ �(ρ(n)),
∑

in+1∈�(ρ(n+1))

Bin+1
j

∗
b(n + 1, in+1)B

in+1
j

= lim
k→∞

∑

in+1∈�(ρ(n+1))

Bin+1
j

∗

×
( ∑

in+2∈�(ρ(n+2))

· · ·
∑

in+k∈�(ρ(n+k))

B∗
π(in+1,...,in+k )

Bπ(in+1,...,in+k )

)
Bin+1
j

= lim
k→∞

∑

in+1∈�(ρ(n+1))

· · ·
∑

in+k∈�(ρ(n+k))

B∗
π( j,in+1,...,in+k )

Bπ( j,in+1,...,in+k )

= b(n, j).

(iii) We see again

Tr(ρ(n)
j b(n, j))

= lim
k→∞

∑

in+1∈�(ρ(n+1))

· · ·
∑

in+k∈�(ρ(n+k))

Tr
(
ρ

(n)
j B∗

π( j,in+1,...,in+k )
Bπ( j,in+1,...,in+k )

)

= lim
k→∞

∑

in+1

· · ·
∑

in+k

Tr
(
ρ

(n)
j B∗

π( j,in+1,...,in+k )
Bπ( j,in+1,...,in+k )

)

= lim
k→∞Tr(ρ(n)

j )

= Tr(ρ(n)
j ).

Here in the third equality the relation (2.1) was used and the second equality can be shown
by the following argument. Suppose, for example, in+l /∈ �(ρ(n+l)) for some 1 ≤ l ≤ k. We
claim that

Tr
(
ρ

(n)
j B∗

π( j,in+1,...,in+l ,...,in+k )
Bπ( j,in+1,...,in+l ,...,in+k )

)
= 0.

In fact,

Tr
(
ρ

(n)
j B∗

π( j,in+1,...,in+l ,...,in+k )
Bπ( j,in+1,...,in+l ,...,in+k )

)

= Tr
(
Bπ( j,in+1,...,in+l ,...,in+k )ρ

(n)
j B∗

π( j,in+1,...,in+l ,...,in+k )

)

= Tr
(
Bπ(in+l ,...,in+k )Bπ( j,in+1,...,in+l )ρ

(n)
j B∗

π( j,in+1,...,in+l )
B∗

π(in+l ,...,in+k )

)
.

But using the definition of OQRW in (2.4) we see that

0 ≤ Bπ( j,in+1,...,in+l )ρ
(n)
j B∗

π( j,in+1,...,in+l )

≤
∑

j

∑

in+1

· · ·
∑

in+l−1

Bπ( j,in+1,...,in+l )ρ
(n)
j B∗

π( j,in+1,...,in+l )

= ρ
(n+l)
in+l

= 0,

by the assumption that in+l /∈ �(ρ(n+l)). This proves the claim and the proof is completed.
�
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In the sequel, by abuse of notations and to save the space, we use
∑′

il for
∑

il∈�(ρ(l)) whenever
there is no danger of confusion.

Lemma 4.4 For any an] = a0 ⊗ · · · ⊗ an ⊗ I[n+1 ∈ An], we have

E0](an]) =
∑

i0

′ · · ·
∑

in

′ n∏

k=0

Tr(ρ(k)
ik

⊗ |ik〉〈ik |ak)
Tr(ρ(k)

ik
)

×
(
B∗

π(i0,...,in)b(n, in)Bπ(i0,...,in) ⊗ |i0〉〈i0|
)

. (4.6)

Proof Recall

E0](an]) = E(0)(a0 ⊗ · · · ⊗ E(n)(an ⊗ b(n + 1))).

By Definition (4.4) and Lemma 4.3 (i) and (ii), we see that

E(n)(an ⊗ b(n + 1)) =
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |an)
Tr(ρ(n)

in
)

∑

in+1

′
Bin+1
in

∗
b(n + 1, in+1)B

in+1
in

⊗ |in〉〈in |

=
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |an)
Tr(ρ(n)

in
)

b(n, in) ⊗ |in〉〈in |.

Now repeated application of (4.4) and Lemma 4.3 (i) gives the result. �

The following proposition shows two important features of our definition. One is that
for any initial state ρ(0), the pair (ρ(0), (E(n))n≥0) is a Markov pair (see Corollary 4.6), in
other words, ρ in (4.5) is a state on A and hence a QMC. The second one is that the QMCs
associatedwithOQRWs naturally extend the classicalMarkov chains (see (5.4) in Subsection
5.2).

Proposition 4.5 For any x ∈ B,

ρ(I ⊗ · · · ⊗ I ⊗ nth
x ⊗ I ⊗ · · · ) = ρ(n)(x),

where ρ(n) = Mn(ρ(0)).

Proof Using the definition (3.4), we get

ρ(I ⊗ · · · ⊗ I ⊗ nth
x ⊗ I ⊗ · · · )

= ρ(0)
(
E(0)(I ⊗ · · · ⊗ E(n)(x ⊗ b(n + 1)))

)
.
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By Lemmas 4.4 and 4.3 (iii), we have

ρ(0)
(
E(0)(I ⊗ · · · ⊗ E(n)(x ⊗ b(n + 1)))

)

=
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |x)
Tr(ρ(n)

in
)

∑

i0

′ · · ·
∑

in−1

′
Tr
(
Bπ(i0,...,in)ρ

(0)
i0

B∗
π(i0,...,in)b(n, in)

)

=
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |x)
Tr(ρ(n)

in
)

∑

i0

· · ·
∑

in−1

Tr
(
Bπ(i0,...,in)ρ

(0)
i0

B∗
π(i0,...,in)b(n, in)

)

=
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |x)
Tr(ρ(n)

in
)

Tr
(
ρ

(n)
in

b(n, in)
)

=
∑

in

′ Tr(ρ(n)
in

⊗ |in〉〈in |x)
Tr(ρ(n)

in
)

Tr(ρ(n)
in

)

=
∑

in

′
Tr(ρ(n)

in
⊗ |in〉〈in |x)

= ρ(n)(x).

The second and third equalities follow from the definition ofOQRWs. The proof is completed.
�

Corollary 4.6 The pair (ρ(0), (E(n))n≥0) is a Markov pair.

Proof It follows from Proposition 4.5 by taking x = I . �
Definition 4.7 The pair (ρ(0), (E(n))n≥0), or the state ρ in (4.5) is called the (nonhomoge-
neous) QMC associated with the OQRW.

We remark that as will be noted in Sect. 5.2, the property in Proposition 4.5 is observed when
the QMCs are applied to recover the classical Markov chains (see (5.4)), and this property
was already observed in [11,12].

Next we shortly discuss the invariant states for the QMCs.

Definition 4.8 (Invariant state) A state (density matrix)ω onB is called invariant to the QMC
if

Tr(ωx) = Tr(ωE(n)(I ⊗ x))

for all x and n = 0, 1, 2, . . ..

This corresponds to the condition (2.3) of [25]. The following proposition shows that an
invariant state ω to the Markov chain of a OQRW is an invariant state (density operator) with
respect to M.

Proposition 4.9 A state ω = ∑
i ωi ⊗ |i〉〈i | is invariant to the QMC of OQRW if and

only if
∑

i, j Tr2(K
(n)
i j

∗
ω ⊗I K (n)

i j ) = ω for all n ≥ 0, and in this case ω satisfies

ω = ∑
i, j M

i
jωMi

j
∗
, that is, ω = M(ω). On the other hand, if ω = M(ω), the state ω

is invariant to the QMC (ρ(0), (E(n))n≥0) with ρ(0) = ω. In this case we have E(n) = E(0)

for all n ≥ 0, i.e., the QMC is homogeneous.
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Proof We have

Tr(ωE(n)(I ⊗ x)) =
∑

i, j

Tr
(
Tr2((ω ⊗ I )(K (n)

i j (x ⊗ I )K (n)
i j

∗
))
)

=
∑

i, j

T̃r
(
(ω ⊗ I )(K (n)

i j (x ⊗ I )K (n)
i j

∗
)
)

=
∑

i, j

Tr
(
Tr2
(
K (n)
i j

∗
(ω ⊗ I )K (n)

i j (x ⊗ I )
))

=
∑

i, j

Tr
(
Tr2
(
K (n)
i j

∗
(ω ⊗ I )K (n)

i j

)
x
)
.

Thus Tr(ωE(n)(I ⊗ x)) = Tr(ωx) for all x if and only if
∑

i, j Tr2(K
(n)
i j

∗
ω ⊗ I K (n)

i j ) = ω.
By direct calculation, we have

∑

i, j

Tr2(K
(n)
i j

∗
ω ⊗ I K (n)

i j ) =
∑

j :ρ(n)
j �=0

∑

i

Mi
jωMi

j
∗

=
∑

j :ρ(n)
j �=0

∑

i

Bi
jω j B

i
j
∗ ⊗ |i〉〈i |.

Therefore
∑

i, j Tr2(K
(n)
i j

∗
ω ⊗ I K (n)

i j ) = ω if and only if

∑

i

ωi ⊗ |i〉〈i | =
∑

i

⎛

⎜⎝
∑

j :ρ(n)
j �=0

Bi
jω j B

i
j
∗
⎞

⎟⎠⊗ |i〉〈i |. (4.7)

By taking trace to both sides of the above equation we get

1 =
∑

i

∑

j :ρ(n)
j �=0

Tr
(
Bi
jω j B

i
j
∗)

=
∑

j :ρ(n)
j �=0

Tr(ω j ).

This means that ωi = 0 if ρ
(n)
i = 0 (for all n ≥ 0). Thus (4.7) is written as

∑

i

ωi ⊗ |i〉〈i | =
∑

i

∑

j

Bi
jω j B

i
j
∗ ⊗ |i〉〈i | =

∑

i

M(ω)i ⊗ |i〉〈i |.

We have therefore ω = M(ω).
Now conversely suppose ω = M(ω) and define a Markov pair (ρ(0), (E(n))n≥0) with

ρ(0) = ω. Then, since ρ(n) = ρ(0) = ω for all n ≥ 0, it is a homogeneous QMC. Moreover,
by (4.4)
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Tr(ωE(n)(I ⊗ x)) =
∑

j :ω j �=0

∑

i

Tr(ωMi
j
∗
xMi

j )

=
∑

j :ω j �=0

∑

i

Tr(Bi
jω j B

i
j
∗ ⊗ |i〉〈i |x)

=
∑

j

∑

i

Tr(Bi
jω j B

i
j
∗ ⊗ |i〉〈i |x)

= Tr(M(ω)x) = Tr(ωx).

Therefore, ω is invariant to the QMC (ρ(0), (E(n))n≥0) with ρ(0) = ω. �

4.2 Reducibility and Irreducibility of QMCs for OQRWs

Recall the definition of reducibility and irreducibility of QMCs in Definition 3.7 with the
projections in (3.9) and (3.10).Whenwe consider the reducibility and irreducibility problems
for QMCs associated with OQRWs, the possible reducing projections shall be of the form:

p[n = I ⊗ · · · ⊗ I ⊗ nth
p ⊗ p ⊗ · · · ∈ A with p =

∑

j

p( j) ⊗ | j〉〈 j | ∈ B, (4.8)

where p( j)’s are projections on H. Then we define

P0 := {p[n : p[n, a projection of the form (4.8), n ∈ Z+}. (4.9)

We say that a QMC associated with an OQRW is reducible if there exists a nontrivial pro-
jection p[n0 ∈ P0 satisfying (3.11) in Definition 3.7. Otherwise it is called irreducible.

Let 0 ≤ m ≤ n and 0 ≤ n0 ≤ n. Consider a = a0 ⊗ a1 ⊗ · · · ⊗ am ⊗ I[m+1 ∈ Am] and a
projection p[n0,n] := I ⊗ · · · ⊗ I ⊗ n0th

p ⊗ · · · p⊗ I[n+1. Notice that p[n0 = limn→∞ p[n0,n].
In order to compute E0](p[n0,n]ap[n0,n]), we let for the time being

pl :=
{
I , 0 ≤ l ≤ n0 − 1,

p, n0 ≤ l ≤ n.
(4.10)

By Lemma 4.4 we get for a = a0 ⊗ a1 ⊗ · · · ⊗ am ⊗ I[m+1, m ≤ n,

E0](p[n0,n]ap[n0,n])

=
∑

i0

′ · · ·
∑

in

′ m∏

k=0

Tr(ρ(k)
ik

pk(ik)ak(ik)pk(ik))

Tr(ρ(k)
ik

)

n∏

k=m+1

Tr(ρ(k)
ik

pk(ik))

Tr(ρ(k)
ik

)

×
(
B∗

π(i0,...,in)b(n, in)Bπ(i0,...,in) ⊗ |i0〉〈i0|
)

, (4.11)

where pk’s are given by (4.10). In particular, we have

E0](p[n0,n])

=
∑

i0

′ · · ·
∑

in

′ n∏

k=n0

Tr(ρ(k)
ik

pk(ik))

Tr(ρ(k)
ik

)

×
(
B∗

π(i0,...,in)b(n, in)Bπ(i0,...,in) ⊗ |i0〉〈i0|
)

. (4.12)
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Lemma 4.10 For p[n0 ∈ P0, one has

I − p[n0 =
∞∑

n≥n0

I ⊗ · · · I ⊗ n0th
p ⊗ · · · ⊗ p ⊗

nth

p⊥ ⊗ I[n+1 (4.13)

where p⊥ = I − p.

Proof Let us adopt the notations in (4.10). We have

p⊥
0 ⊗ I[1 + p0 ⊗ p⊥

1 ⊗ I[2 = I − p0 ⊗ p1 ⊗ I[2.

Continuing this procedure, we have

n∑

k≥0

p0 ⊗ p1 ⊗ · · · ⊗ pk−1 ⊗ p⊥
k ⊗ I[k+1 = I − p0 ⊗ p1 ⊗ · · · ⊗ pn ⊗ I[n+1.

So taking the limit n → ∞, and returning back the notations, we get (4.13). �

Proposition 4.11 Let p[n0 ∈ P0. Then, E0](I − p[n0) = 0 if and only if ρ(n)
j p( j) = ρ

(n)
j for

all j ∈ � and n ≥ n0.

Proof If E0](I − p[n0) = 0 then by (4.13) we have

∞∑

n≥n0

E0](I ⊗ · · · I ⊗ n0th
p ⊗ · · · ⊗ p ⊗

nth

p⊥ ⊗ I[n+1) = 0.

Therefore, by Lemma 4.4, we have for n ≥ n0,

E0](I ⊗ · · · I ⊗ n0th
p ⊗ · · · ⊗ p ⊗

nth

p⊥ ⊗ I[n+1)

=
∑

i0

′ · · ·
∑

in

′ n−1∏

k=n0

Tr(ρ(k)
ik

p(ik))

Tr(ρ(k)
ik

)

Tr(ρ(n)
in

p⊥(in))

Tr(ρ(n)
in

)

(
B∗

π(i0,...,in)b(n, in)Bπ(i0,...,in)

⊗|i0〉〈i0|
)

= 0. (4.14)

From this, we claim that Tr(ρ(n)
j p( j)⊥) = 0 for all n ≥ n0 and j ∈ �(ρ(n)). In fact, first we

see that

0 = E0](I ⊗ · · · I ⊗
n0th

p⊥ ⊗ I[n0+1)

=
∑

in0

′ Tr(ρ
(n0)
in0

p⊥(in0))

Tr(ρ(n0)
in0

)

∑

i0

′ · · ·
∑

in0−1

′ (
B∗

π(i0,··· ,in0 )b(n0, in0)Bπ(i0,··· ,in0 ) ⊗ |i0〉〈i0|
)
.

Since

Tr
(
ρ(0)
∑

i0

′ · · ·
∑

in0−1

′ (
B∗

π(i0,...,in0 )b(n0, in0)Bπ(i0,...,in0 ) ⊗ |i0〉〈i0|
))

= Tr
(
ρ

(n0)
in0

b(n0, in0)
)

= Tr
(
ρ

(n0)
in0

)
> 0,

123



1288 A. Dhahri et al.

which follows by Lemma 4.4 (iii), the operator
∑

i0

′ · · ·
∑

in0−1

′ (
B∗

π(i0,...,in0 )b(n0, in0)Bπ(i0,...,in0 ) ⊗ |i0〉〈i0|
)

is positive. Thus we conclude that Tr(ρ(n0)
j p( j)⊥) = 0 for j ∈ �(ρ(n0)). By induction and

repeated use of (4.14) proves the claim.Now, sinceTr(ρ(n)
j p( j)⊥) = Tr(p( j)⊥ρ

(n)
j p( j)⊥) ≥

0, p( j)⊥ρ
(n)
j p( j)⊥ = 0 and so ρ

(n)
j p( j)⊥ = 0, or ρ

(n)
j p( j) = ρ

(n)
j for all n ≥ n0 and

j ∈ �(ρ(n)), and hence for all j ∈ �.
On the other hand, if ρ

(n)
j p( j) = ρ

(n)
j for all n ≥ n0 and j ∈ �, we get from (4.12) that

E0](I ⊗ I ⊗ · · · ) = E0](p[n0,n]) =
∑

i0

′ · · ·
∑

in

′ (
B∗

π(i0,...,in)b(n, in)Bπ(i0,...,in) ⊗ |i0〉〈i0|
)

.

Therefore, we have E0](I − p[n0,n]) = 0. Taking the limit n → ∞, we get E0](I − p[n0) = 0.
The proof is completed. �
Theorem 4.12 The QMC associated with an OQRW is reducible with a reducing projection
p[n0 ∈ P0 if and only if ρ

(n)
j p( j) = ρ

(n)
j for all j ∈ � and n ≥ n0.

Proof The proof follows from Theorem 3.9 and Proposition 4.11. �
Theorem 4.13 Suppose that h is a nontrivial projection on H such that

hBπ = Bπ

for any path π ∈ P(i, j) for all i, j ∈ �. Then the QMC is reducible.

Proof Define a projection p ∈ B(H⊗K) by p := h ⊗ IK =∑ j∈� h ⊗ | j〉〈 j | and consider
p[1 ∈ P0. Then for n ≥ 1,

ρ
(n)
j h =

∑

i0∈�

∑

π∈P(i0, j)

Bπρi0 B
∗
πh

=
∑

i0∈�

∑

π∈P(i0, j)

Bπρi0 B
∗
π

= ρ
(n)
j .

By Theorem 4.12, the QMC is reducible with a reducing projection p[1. �

Remark 4.14 (a) The condition ρ
(n)
j p( j) = ρ

(n)
j for all j ∈ � and n ≥ n0 in Proposition

4.11 is equivalent to p( j)ρ(n)
j p( j) = ρ

(n)
j for all j ∈ � and n ≥ n0, which means that

for each j ∈ �, the support of ρ
(n)
j is in the range space of p( j) for all n ≥ n0.

(b) By Theorem 4.13, if the range of Bi
j for all i, j belongs to the nontrivial subspace, that

is, hBi
j = Bi

j for some nontrivial projection h, then the QMC is reducible.

Next we discuss some sufficient conditions for the irreducibility.

Theorem 4.15 Suppose that the OQRW is such that ρ(n)
j /Tr(ρ(n)

j ) is a faithful state on B(H)

for all j ∈ � and n = 0, 1, 2, . . .. Then the QMC associated with this OQRW is irreducible.
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Proof Suppose, on the contrary, that there is a nontrivial projection p onH and p[n0 ∈ P0 is

a reducing projection for the QMC. Then by Theorem 4.12 it follows that ρ
(n)
j p( j) = ρ

(n)
j

for all j ∈ � and n ≥ n0. Since ρ
(n)
j /Tr(ρ(n)

j ) is a faithful state it must hold that p( j) is the
identity operator on H, leading to a contradiction. �
An example satisfying the conditions in the theorem will be considered in Sect. 5.2.

Remark 4.16 The reducibility and irreducibility of positive maps on the ideal of trace class
operators (in Schrödinger representation), and equivalently, of positive maps on the operator
algebras (in Heisenberg representation), was introduced in some literature, see for example,
[4,27]. Typically, the study of reducibility and irreducibility for OQRWs was investigated in
[4]. It turns out that the concepts of reducibility and irreducibility for OQRWs defined in [4]
and in this paper are equivalent. In the Appendix we will consider the equivalence in detail.
Therefore, in particular, under the condition of Theorem 4.13, the OQRW is reducible in the
sense of [4]. Also, under the condition of Theorem 4.15, the OQRW is irreducible in the
sense of [4].

5 Examples

5.1 OQRWs on the 1-Dimensional Integer Lattice

In this subsection we give some examples of reducible and irreducible OQRWs on the 1-
dimensional integer lattice. Of course the idea can be extended to multi-dimensional models.
First we consider reducible OQRWs.

Example 5.1 Let us consider a stationary OQRW onZwith nearest-neighbor jumps (see [2]).
LetH be a Hilbert space and B,C ∈ B(H) such that B∗B+C∗C = I . We define the OQRW
as follows:

Bi−1
i = B and Bi+1

i = C

for all i ∈ Z, and Bi
j = 0 in the other cases. Fix a density operator ρ ∈ B(H ⊗ K), of the

form

ρ =
∑

i

ρi ⊗ |i〉〈i |

with ρi �= 0 for all i . We get

M(ρ) =
∑

j

(
Bρ j+1B

∗ + Cρ j−1C
∗)⊗ | j〉〈 j |. (5.1)

In order to specify the model, let us consider the following matrices,

B =
[

0 0
1√
2

1√
2

]
, C =

[
0 0

− 1√
2

1√
2

]
, h =

[
0 0
0 1

]
,

or

B =
[

1√
2

0

− 1√
2

0

]
, C =

[
0 1√

2
0 − 1√

2

]
, h =

[ 1
2 − 1

2− 1
2

1
2

]
.
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For both cases, B and C satisfy B∗B +C∗C = I and hB = B, hC = C . By Theorem 4.13,
the QMC corresponding to this OQRW is reducible.

The following is an example of reducible OQRW in 1 dimension with 3 states.

Example 5.2 Let us consider a stationary OQRW on Z with nearest-neighbor jumps. Let H
be a Hilbert space and Li ∈ B(H), i = 1, 2, 3, satisfy

∑3
i=1 L

∗
i Li = I . We define the walk

as follows:

Bi−1
i = L1, Bi

i = L2 and Bi+1
i = L3

for all i ∈ Z, and Bi
j = 0 for the other cases. The evolution (5.1) becomes now

M(ρ) =
∑

j

(L1ρ j+1L1
∗ + L2ρ j L2

∗ + L3ρ j−1L3
∗) ⊗ | j〉〈 j |.

If we take the matrices

L1 =
⎡

⎣
0 0 0
0 1√

2
1√
2

0 0 0

⎤

⎦ , L2 =
⎡

⎣
0 0 0
0 1√

2
− 1√

2
0 0 0

⎤

⎦ , L3 =
⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ , h =
⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦ ,

it holds that hLi = Li , i = 1, 2, 3. Thus by Theorem 4.13 again, the QMC is reducible.

Next we consider irreducible OQRWs in 1-dimensional space.

Proposition 5.3 In the 1-dimensional OQRW in (5.1), suppose that B and C satisfy the
following condition:

B∗x B = 0 and C∗xC = 0 for nonnegative x ∈ B(H) implies x = 0. (5.2)

ThenM(ρ) is faithful wheneverρ is faithful. Therefore by Theorem 4.15, theQMCassociated
with the OQRW (5.1) with a faithful initial state ρ(0) is irreducible.

Proof Let ρ = ∑i∈Z ρi ⊗ |i〉〈i | be a faithful state. This means that ρi ’s are faithful for all
i ∈ Z. We have to show that

M(ρ)i = Bρi+1B
∗ + Cρi−1C

∗

is faithful for each i ∈ Z. So, let x ∈ B(H) be a nonnegative operator (matrix) and suppose
that

Tr(M(ρ)i x) = Tr((Bρi+1B
∗ + Cρi−1C

∗)x) = 0.

Since ρi+1 as well as ρi−1 are faithful, it implies that B∗x B = 0 and C∗xC = 0. By the
condition (5.2) we get x = 0. The proof is completed. �

The simplest example for which the condition (5.2) holds is the case where B or C is
invertible. In the following example, the invertibility of B or C is not needed.

Example 5.4 Let U = [u v
]
be a 2 × 2 unitary matrix with column vectors u and v. Let

B = [u 0
]
and C = [0 v

]
.

Then we get

B∗x B =
[〈u, xu〉 0

0 0

]
and C∗xC =

[
0 0
0 〈v, xv〉

]
.

Thus the condition (5.2) is satisfied. By Proposition 5.3, if the OQRWhas faithful initial state
ρ(0), the associated QMC is irreducible.
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5.2 Classical Markov Chains

In this subsection we consider the classical Markov chains. The recovery of the classical
Markov chains from the OQRWs was introduced in [2]. Let H = C and K = l2(�). Then
H ⊗ K ≈ l2(�). Let P = (P(i, j))i, j∈� be a stochastic matrix, i.e., all the components are
nonnegative and satisfy

∑

j∈�

P(i, j) = 1 for all i ∈ �.

For each i, j ∈ �, let Ui
j be a unitary operator on H = C. (Thus Ui

j is a complex number
with modulus 1, and in the sequel, it turns out that there is no difference with the choice
Ui

j ≡ 1.) Define

Bi
j := √P( j, i)Ui

j , i, j ∈ �.

We see that
∑

i

Bi
j
∗
Bi
j = I , j ∈ �.

We notice that since H = C is a one-dimensional space, the algebra B consisting of the
operators x =∑ j x j ⊗| j〉〈 j |, with (x j ) a bounded sequence inC, is a commutative algebra.
If ρ = (ρi )i∈� is a state, i.e., a probability measure on �, we denote by Pρ the projection
onto the support of ρ. Here the support of ρ is the set of i ∈ � at which ρi > 0. By a direct
computation from (4.4) we get

E(n)(x ⊗ y) = Pρ(n)x Py, (5.3)

where

(Py) j =
∑

i

P( j, i)yi .

Notice that, in the classical Markov chain, if ρ(0) is the initial state (a probability measure)
then ρ(1) = ρ(0)P , i.e.,

ρ
(1)
i =

∑

j∈�

ρ
(0)
j P( j, i),

and

ρ(n) = ρ(0)Pn .

Proposition 5.5 For any initial state ρ(0), the nth evolution of the open quantum random
walk,Mn(ρ(0)), is ρ(0)Pn. Therefore, the evolutions by classical Markov chain and by open
quantum random walk are the same.

Proof By induction, it is enough to see M(ρ(0)).

(M(ρ(0)))i =
∑

j

Bi
jρ

(0)
j Bi

j
∗

=
∑

j

ρ
(0)
j P( j, i)

= (ρ(0)P)i .
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The proof is complete. �
Applying the formula (5.3) repeatedly we get

ρ

(
I ⊗ · · · ⊗ I ⊗ nth

x ⊗ I ⊗ · · ·
)

= ρ(0) (E0] (I ⊗ · · · ⊗ I ⊗ x ⊗ I ⊗ · · · ))

= ρ(0)(E(0)(I ⊗ E(1)(I ⊗ · · · E(n)(x ⊗ I ))))

= ρ(0)(Pρ0 PPρ(1) P · · · Pρ(n−1) PPρ(n)x)

= Eρ(0) [Pnx] = Eρ(n) [x]. (5.4)

The transition expectation thus recovers the classical Markov chain, which was observed in
[11,12].

Recall that in the classical Markov chain with transition matrix P , we say that a state
j is accessible from i , written i → j , if Pn(i, j) > 0 for some n ∈ N. We say that i
communicates with j , written i ↔ j , if i → j and j → i . The relation ′′ ↔′′ is an
equivalence relation. In the case when every states communicate with every other states, we
say that the chain is irreducible. Otherwise, it is called reducible [28]. We want to see the
reducibility or irreducibility of classical Markov chains also from the view point of quantum
Markov chains. We emphasize here that, by definition, when we discuss the reducibility or
irreducibility of QMCs, not only the transition expectations but also the initial states are
concerned.

Proposition 5.6 Suppose a classicalMarkov chainwith transitionmatrix P is reducible. Then
the QMC (ρ(0), (E(n))n≥0) with a suitably chosen initial state (measure) ρ(0) and transition
expectations E(n) given by (5.3) is reducible.

Proof The state space� of the Markov chain is decomposed as� = T ∪ (∪k Rk), where T is
the set of transient states and Rk’s are closed, recurrent communicating classes. If there is a
closed, recurrent communicating class, say R1, by the hypothesis of the proposition, it holds
that R1 �= �. Let p := PR1 be the projection onto the set R1, i.e., PR1 is the indicator function
1R1 looked as amultiplication operator on l2(�), andwe consider p[0 = p⊗ p⊗· · · . Let ρ(0)

be a state (measure) supported on R1. Since R1 is a closed communicating class, ρ(n) is also
supported on R1 for all n ≥ 1. Now the condition ρ

(n)
j p( j) = ρ

(n)
j is equivalent to saying

that p( j) = 1 on the support of ρ(n), and this is the case by our construction. Therefore by
Theorem 4.12 the QMC is reducible. If there is no closed, recurrent communicating class,
then the set� consists only of transient states. Fix an i0 ∈ � and letC0 be the communicating
class containing i0. By the assumption C0 is not closed, i.e., there is a state j ∈ � \C0 such
that i1 → j for some i1 ∈ C0 and j � i for all i ∈ C0. Let C1 := { j ′ ∈ � : j → j ′}. Then
C1 ∩ C0 = ∅ and if the initial measure ρ(0) is supported on the set C1, it follows that ρ(n)

is also supported on the set C1 for all n ≥ 1. Defining now p := PC1 , the projection onto
the set C1, we see as above that p[0 = p ⊗ p ⊗ · · · is a reducing projection for the QMC
(ρ(0), (E(n))n≥0). �
Let us now consider the converse problem.

Proposition 5.7 Suppose that the classical Markov chain with transition matrix P is irre-
ducible. Then the QMC of transition expectation (5.3) with any faithful initial state is
irreducible.

Proof Suppose that the transition expectation (5.3) is constructed from a faithful initial state
ρ(0). From the assumption of irreducibility of the classical Markov chain, the distribution at
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any time has full support. This implies by Proposition 5.5 that the state ρ(n) is faithful for
any n ≥ 0. The result now follows from Theorem 4.15. �
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A Equivalence of Concepts of Reducibility/Irreducibility of OQRWs
Defined in [4] and in This Paper

First of all we recall the definition of reducibility/irreducibility used in [4]. Let� be a positive
map on the ideal I1(h) of trace class operators on a Hilbert space h. When we come to our
model, h isH⊗K and � isM. � is said to be irreducible (see [4, Definition 3.1]) if the only
orthogonal projections p reducing �, i.e. such that �(pI1(h)p) ⊂ pI1(h)p, are p = 0 and
I . Applying to OQRWs, Carbone and Pautrat have shown (terminology in our language):

Proposition A.1 ([4, Proposition 3.8]) The completely positive and trace preserving mapM
is irreducible if and only if for any i, j ∈ � and anyψ, ξ ∈ H\{0}, there is a pathπ ∈ P(i, j)
such that 〈ξ, Bπψ〉 �= 0.

Now we show the definitions of reducibility/irreducibility of OQRWs given in [4] and in the
present paper are equivalent. First we remark that as given by [4, Proposition 6.1, item 3],
once an OQRW is reducible (in the sense of [4]) one can always find a reducing projection
p of the block-diagonal form: p = ∑

j p( j) ⊗ | j〉〈 j |. Conversely speaking, if there is no
nontrivial block-diagonal reducing projection the OQRW is irreducible. Suppose the OQRW
is reducible in the sense of [4] with a reducing projection p = ∑

j p( j) ⊗ | j〉〈 j |. By [4,
Proposition 6.2], it holds that for any i, j ∈ �,

Bi
j p( j) = p(i)Bi

j p( j). (A.1)

Take an initial state ρ(0) = ∑ j ρ
(0)
j ⊗ | j〉〈 j | such that p( j)ρ(0)

j p( j) = ρ
(0)
j for all j ∈ �.

We can show by induction that for all n ≥ 0 and j ∈ �,

p( j)ρ(n)
j p( j) = ρ

(n)
j . (A.2)

In fact, suppose (A.2) holds for n = 0, · · · , k. Then, by the assumption hypothesis and (A.1)

p( j)ρ(k+1)
j p( j) =

∑

i

p( j)B j
i ρ

(k)
i B j

i

∗
p( j)

=
∑

i

p( j)B j
i p(i)ρ

(k)
i p(i)B j

i

∗
p( j)

=
∑

i

B j
i p(i)ρ

(k)
i p(i)B j

i

∗

=
∑

i

B j
i ρ

(k)
i B j

i

∗ = ρ
(k+1)
j .

Now (A.2) holds and by Theorem 4.12 the OQRW is reducible in the sense of this paper
(recall (A.2) is equivalent to ρ

(n)
j p( j) = ρ

(n)
j ).
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Conversely, suppose that theOQRWis reducible in the sense of present paper. ByTheorem
4.12, there is a nontrivial projection p =∑ j p( j) ⊗ | j〉〈 j | such that (A.2) holds for n ≥ n0
for some n0. Find a j ∈ � such that p( j) �= IH. By the assumption we have for any k ≥ 0,

Tr(ρ(n0+k)
j p( j)⊥) = Tr(ρ(n0+k)

j p( j)p( j)⊥) = 0.

Take an i ∈ � such that ρ(n0)
i �= 0. From the above relation we have

0 = Tr(ρ(n0+k)
j p( j)⊥)

=
∑

i0,...,ik−1

Tr
(
Bπ(i0,...,ik−1, j)ρ

(n0)
i0

B∗
π(i0,...,ik−1, j) p( j)

⊥)

≥ Tr
(
Bπρ

(n0)
i B∗

π p( j)⊥
)

= Tr
(
ρ

(n0)
i B∗

π p( j)⊥Bπ

)
≥ 0,

for any path π ∈ P(i, j) of length k. Thus for any 0 �= ψ ∈ H lying in the spectral projection
of ρ(n0)

i away from zero, e.g., any eigenvector of ρ(n0)
i corresponding to nonzero eigenvalue,

〈ψ, B∗
π p( j)⊥Bπψ〉 = 0.

Therefore, for any such a vector 0 �= ψ and 0 �= ξ ∈ p( j)⊥, and for any path π ∈ P(i, j),

|〈ξ, Bπψ〉| = |〈ξ, p( j)⊥Bπψ〉|
≤ ‖ξ‖〈p( j)⊥Bπψ, p( j)⊥Bπψ〉1/2 = 0.

By Proposition A.1, it says that the OQRW is reducible in the sense of [4]. This completes
the proof of equivalence.
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