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Abstract
We discuss the Gaussian and the mixture of Gaussians in the limit of open quantum
random walks. The central limit theorems for the open quantum random walks under
certain conditions were proven by Attal et al (Ann Henri Poincaré 16(1):15–43, 2015)
on the integer lattices and by Ko et al (Quantum Inf Process 17(7):167, 2018) on
the crystal lattices. The purpose of this paper is to investigate the general situation.
We see that the Gaussian and the mixture of Gaussians in the limit depend on the
structure of the invariant states of the intrinsic quantum Markov semigroup whose
generator is given by the Kraus operators which generate the open quantum random
walks. Some concrete models are considered for the open quantum random walks
on the crystal lattices. Due to the intrinsic structure of the crystal lattices, we can
conveniently construct the dynamics as we like. Here, we consider the crystal lattices
of Z

2 with intrinsic two points, hexagonal, triangular, and Kagome lattices. We also
discuss Fourier analysis on the crystal lattices which gives another method to get the
limit theorems.
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1 Introduction

In this paper, we investigate the limit distributions of the open quantum random walks
(OQRWs hereafter) [1–3,8]. The limit distributions of OQRWs have been investigated
in several papers. See, for instance, references [1,2,7,9]. The central limit theorem
(CLT in short) was firstly shown in [1] for OQRWs on the integer lattices, and then,
it was shown for models on the crystal lattices in [8]. In both cases, in order that the
CLT holds, a certain condition must be provided. Recall that the OQRWs consist of
repeated two dynamics: an intrinsic change of states followed by space movements.
Considering solely the intrinsic dynamics, it defines a quantum Markov semigroup
(QMS shortly). The condition for the CLT is that the QMS should be irreducible and
thereby there exists only one invariant state for the QMS. We refer to Sect. 3 for the
details. One naturally then asks what would be the limit distribution of the OQRWs
if the irreducibility fails to hold. It is the main motivation of this paper to answer this
question.

After demonstrating some known results on the structure of invariant states for
QMSs [4–6,11,12], we show that in general we get a mixture of Gaussians for the
limit distributions of OQRWs. For the models, we consider the OQRWs on the crystal
lattices. One notices that the crystal lattices extend the integer lattices (see Sect. 2.1).
Since they have rich intrinsic structure, it is very convenient to set up many interest-
ing models on them. The crystal lattices considered here are the Z

2 with intrinsic two
points, hexagonal, triangular, and Kagome lattices. In [8], wemainly dealt with hexag-
onal lattices to construct OQRWs showing CLT. In this paper, we further consider the
triangular and Kagome lattices satisfying the central limit theorems (see “Appendix
A”). As for the mixture of Gaussians, we consider some models on Z

2 with intrinsic
two points and amodel on the hexagonal lattice (Sect. 4.3).Wewould like to stress that
the models considered here serve as good examples for understanding the structure of
the invariant states for the QMSs.

The paper is organized as follows: In Sect. 2,we briefly recall the basic preliminaries
that was introduced in [8]. Namely, we review the definition of the crystal lattices and
the construction of OQRWs on the crystal lattices. In Sect. 3, we recall the central
limit theorem for the OQRWs on the crystal lattices. The models of CLT will be
demonstrated in “Appendix.” In Sect. 4, we deal with the situation where a mixture
of Gaussians appears. In Sect. 4.1, we review some known results on the structure of
invariant states for QMSs.We apply the theory to the OQRWs and investigate the limit
distributions of OQRWs in Sect. 4.2 and give some examples in Sect. 4.3. In Sect. 5,
we summarizewhat we have discussed in themain body of the paper. In “AppendixA,”
we provide with some models that reveal CLT on the triangular and Kagome lattices.
The method of Fourier analysis, which gives an analytic proof of the limit distribution,
is given in “Appendix B” proving the same result obtained in the body.

2 Preliminaries

In this section, for the readers’ convenience, we briefly review the OQRWs on the
crystal lattices established in [8].
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Fig. 1 Hexagonal lattice: underlying graph G0 for hexagonal lattice (left) and hexagonal lattice (right)

2.1 Crystal lattices

In this subsection, we briefly introduce the crystal lattices summarized in [7]. Let
G0 = (V0, E0) be a finite graph possibly having multi-edges and self-loops. We use
the notation A(G0) for the set of symmetric arcs induced by E0. The homology group
of G0 with integer coefficients is denoted by H1(G0, Z). The abstract periodic lat-
tice L induced by a subgroup H ⊂ H1(G0, Z) is denoted by H1(G0, Z)/H [10].
Let {C1,C2, . . . ,Cb1} be the fundamental cycles of G0 which constitutes the basis of
H1(G0, Z), where b1 is the first Betti number of G0. The spanning tree induced by
{C1,C2, . . . ,Cb1} is denoted by T0. We notice that there is a one-to-one correspon-
dence between {C1,C2, . . . ,Cb1} and A(T0)

c; we describeC(e) ∈ {C1,C2, . . . ,Cb1}
as the fundamental cycle corresponding to e ∈ A(T0)

c so that C(e) is the cycle gen-
erated by adding e to T0. Let d be the number of generators of the quotient group
H1(G0, Z)/H . By taking a set of generating vectors {̂θ(e) : e ∈ A(T0)

c} (we suppose
̂θ(ē) = −̂θ(e), where ē means the reversed arc of e), we may consider L as a subset
of R

d isomorphic to Z
d . In other words, we may think

L =
{
∑

nêθ(e) : e ∈ A(T0)
c, ne ∈ Z

}

.

The covering graph G = (V , A) of G0, which is called a crystal lattice, is defined
as follows. First, we define a map φ0 : V0 → R

d . The covering graph G = (V , A) is
defined as follows:

V = L + φ0(V0) ∼= L × φ0(V0);
A = ∪x∈L {((x, o(e)), (x, t(e))) | e ∈ A(T0)}

∪ (∪x∈L
{(

(x, o(e)), (x +̂θ(e), t(e))
) | e ∈ A(T0)

c}) .

Here, o(e) and t(e) mean the origin and terminus of e, respectively.
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Fig. 2 Z
2 as a crystal lattice

We take ̂θ(e) ≡ 0 for e ∈ A(T0) and choose ei1 , . . . , eid from A(T0)
c so that

̂θ1 := ̂θ(ei1), . . . ,̂θd := ̂θ(eid ) span R
d . We further suppose that for all e ∈ A(G0),

̂θ(e) ∈ {∑d
i=1 nîθi : ni ∈ Z, i = 1, · · · , d}, and for any two arcs ei and e j in A(T0)

c,
̂θ(ei ) and̂θ(e j ) are linearly independent unless e j = ei . We define a d × d matrix by

� := ([̂θ1, . . . ,̂θd ]−1)T . (2.1)

Notice that if {ei : i = 1, · · · , d} is the canonical basis for R
d , then we have

ei =
d
∑

j=1

�i ĵθ j . (2.2)

Before ending this subsection, we remark that the integer lattices are the special
crystal lattices as can be seen in Fig. 2.

2.2 OQRWs on the crystal lattices

The Hilbert space for the OQRWs on the crystal lattices has the form h ⊗ K, where
K := l2(L) with a canonical orthonormal basis {|x〉 : x ∈ L}, and h := ⊕u∈V0hu with
hu , u ∈ V0, being a copy of a finite-dimensional Hilbert space h0.

Whenever there is no danger of confusion, we also understand hu as a subspace of
h. For each e ∈ A(G0), e = (u, v), we let B(e) be a bounded linear operator on h
such that Dom(B(e)) = hu and Ran(B(e)) ⊂ hv , and it satisfies
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∑

e∈A(G0);
o(e)=u

B∗(e)B(e) = Ihu for all u ∈ V0. (2.3)

We easily check that

∑

e∈A(G0)

B∗(e)B(e) =
∑

u∈V0

∑

e∈A(G0);
o(e)=u

B∗(e)B(e) =
∑

u∈V0
Ihu = Ih. (2.4)

The operators {B(e) : e ∈ A(G0)} will constitute the Kraus representation of our
OQRWs on the crystal lattices. For that we define for each x ∈ L and e ∈ A(G0), a
bounded linear operator Le

x on h ⊗ K by

Le
x := B(e) ⊗ |x +̂θ(e)〉〈x |. (2.5)

We can check (see [8, Lemma 2.1])

∑

x∈L

∑

e∈A(G0)

(

Le
x

)∗
Le
x = Ih⊗K. (2.6)

The OQRW is a completely positive linear operator on the ideal I1(h⊗K) of trace
class operators on h ⊗ K defined by

M(ρ) :=
∑

x∈L

∑

e∈A(G0)

Le
xρ(Le

x )
∗. (2.7)

Let us consider a special class of states (density operators) on h ⊗ K of the form

ρ =
∑

x∈L

(⊕u∈V0ρ(x,u)

)⊗ |x〉〈x |. (2.8)

Here, for each pair (x, u) ∈ L × V0, ρ(x,u) is a positive definite operator on hu and
satisfies

∑

x∈L

∑

u∈V0
Tr(ρ(x,u)) = 1.

The value
∑

u∈V0 Tr(ρ(x,u)) is understood as a probability of finding the particle
at site x ∈ L when the state is ρ. We check that if the state has the form in (2.8),
ρ =∑x∈L

(⊕u∈V0ρ(x,u)

)⊗ |x〉〈x |, M(ρ) has the form

M(ρ) =
∑

x∈L

(

⊕u∈V0ρ′
(x,u)

)

⊗ |x〉〈x |, (2.9)
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where

ρ′
(x,u) =

∑

e∈A(G0);
t(e)=u

B(e)ρ(x−̂θ(e),o(e))B(e)∗.

From now on, we assume thatM is defined on the set of states of the form in (2.8).
As was introduced in [1,2], let (ρn, Xn)n≥0 denote the Markov chain of quantum

trajectory procedure. This is obtained by repeatedly applying the completely positive
map M and a measurement of the position on K. More precisely, denoting E(h) the
space of states on h, (ρn, Xn)n≥0 is a Markov chain on the state space E(h) × L for
which the transition rule is defined as follows: From a point (ρ, x) ∈ E(h) × L, it
jumps to the point

(

1

p(e)
B(e)ρB(e)∗, x +̂θ(e)

)

∈ E(h) × L,

with probability

p(e) = Tr(B(e)ρB(e)∗).

3 Central limit theorem

In this section, we review the central limit theorem for the OQRWs on the crystal
lattices, which was developed in [8]. The same study for the OQRWs on the integer
lattices Z

d was done in [1]. Let us consider the Markov generator

L∗(ρ) :=
∑

e∈A(G0)

B(e)ρB(e)∗ − ρ, ρ ∈ I1(h). (3.1)

Here, I1(h) is the space of trace class operators on h.
We assume the following hypothesis.

(H1) The equation L∗(ρ) = 0 has a unique solution ρ∞ among the state space E(h).

The CLT for the OQRWs on the crystal lattices developed in [8] reads as follows. Let
us define

m :=
∑

e∈A(G0)

Tr
(

B(e)ρ∞B(e)∗
)

̂θ(e). (3.2)

Lemma 3.1 For any l ∈ R
d , the equation (L := (L∗)∗)

− L(L) =
∑

e∈A(G0)

B(e)∗B(e)
(

̂θ(e) · l)− (m · l)I (3.3)

for L ∈ B(h), the space of bounded linear operators on h, admits a solution. The
difference between any two solutions of (3.3) is a multiple of the identity.
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Theorem 3.2 ([8, Theorem 3.5]) Consider an OQRW on a crystal lattice (embedded
in R

d). Assume that the hypothesis (H1) is satisfied. Let (ρn, Xn)n≥0 be the quantum
trajectory process associated with this OQRW. Then,

Xn − nm√
n

converges in law to the Gaussian distribution N (0, �) in R
d , with covariance matrix

� = (Ci j )
d
i, j=1 given by

Ci j = −mim j +
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗)(̂θ(e))i (̂θ(e)) j

+2
∑

e∈A(G0)

Tr(B(e)ρ∞B(e)∗Lei )(
̂θ(e)) j − 2miTr(ρ∞Le j ). (3.4)

Here, for l ∈ R
d , Ll denotes the solution of the equation (3.3).

In [8], we gave some examples satisfying the CLT for the OQRWs on the hexagonal
lattices. In “AppendixA,”we givemore examples of CLT forOQRWs on the triangular
and Kagome lattices.

4 Mixture of Gaussians

In this section, we study the situation where the mixture of Gaussians occurs. Notice
that the operator L∗ in (3.1) is a generator for a (dual) quantum Markov semigroup.
The hypothesis for the CLT in (H1) then says that the quantum Markov semigroup
has a unique invariant state. Therefore, it is natural to ask what would be happening
when there are multiple of invariant states for the quantumMarkov semigroup. It is the
main goal of this paper to investigate this situation. In the first subsection, we review
the basic facts on the structure of invariant states for quantum Markov semigroup. In
Sect. 4.2, we apply it to our model of OQRWs on the crystal lattices.

4.1 Structure of invariant states of quantumMarkov semigroups on the
finite-dimensional spaces

In this subsection, we recall some general theory of the structure of invariant states
for the quantum Markov semigroups (QMSs) [4,6,11,12]. For the application to our
model, it is enough to consider only the QMSs on the finite-dimensional spaces.

Let h be a finite-dimensional Hilbert space. LetA := B(h), the space of all bounded
linear operators on h, and consider the GKSL generator: for H = H∗, and {L j }, the
elements of A,

L(x) = i[H , x] − 1

2

∑

j

(L∗
j L j x − 2L∗

j x L j + xL∗
j L j ), x ∈ A. (4.1)
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The dual generator is given by

L∗(ρ) = −i[H , ρ] − 1

2

∑

j

(L∗
j L jρ − 2L jρL

∗
j + ρL∗

j L j ), ρ ∈ I1(h). (4.2)

The state ρ is invariant for the QMS T = (Tt )t≥0 with generator L if and only if
L∗(ρ) = 0.

Definition 4.1 ([11,12]) The projection pR := sup{pi }, where the pi ’s are the support
projections of all invariant states of T , is called the fast recurrent projection associated
with a QMS T .

A positive operator a is called subharmonic (resp. superharmonic, resp. harmonic) if
Tt (a) ≥ a (resp. Tt (a) ≤ a, resp. Tt (a) = a) for all t ≥ 0. It is known that the support
projection of an invariant state for a QMS is subharmonic [4,11,12]. Moreover, the
projection p = supi∈I pi , where {pi }i∈I is a family of subharmonic projections for T ,
is also subharmonic for T , and hence, the fast recurrent projection pR is subharmonic
for T .

If p is a subharmonic projection, one can define a reduced QMS associated with
p, denoted by (T p

t )t≥0, on pAp [11,12] by

T p
t (a) := pTt (a)p, a ∈ pAp, t ≥ 0. (4.3)

It was shown in [12] that when h is of finite dimensional in particular, we have a
decomposition

pR ⊕ pT = Ih,

where pT is the transient projection associated with the QMS T (see [12] for the
details). Moreover, we have for any ϕ ∈ A∗,

lim
t→∞ ϕ(Tt (pT )) = 0.

(See [12, Corollary 2], [4, Proposition 6].)
Next,wediscuss the invariant states for theQMSs.Recall that aQMST = (Tt )t≥0 is

called irreducible if there is no non-trivial subharmonic projection [5]. Let us consider
the following hypothesis [11]:

(H2) There is an orthonormal set {pi }ki=1 of projections such that:

(a) pR =∑k
i=1 pi ;

(b) T pR
t (pi ) = pi for all i ∈ {1, · · · , k};

(c) The restriction of T pR to the subalgebra piApi is irreducible for all i ∈
{1, · · · , k}.

When h is of finite dimensional, in particular, it was shown in [11,12] pR �= 0 and (H2)
can be satisfied. From now on, we suppose that (H2) holds. In this case, the restriction
of T pR to piApi is a reduced semigroup T pi for all i. For any state ω on A and a
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projection p, pωp is a linear functional on A defined by pωp(x) = ω(pxp) [11].
Suppose that ω is a normal invariant state for the QMS and assume that ω(pi ) �= 0.
As was observed in [11], the state ρi,∞ := ω(pi )−1 piωpi is a unique faithful and
normal T pi -invariant state on the subalgebra piApi (see Sect. 3.6.2 of [11]). By
Theorem 3.7 of [11], T pi is mean ergodic, meaning that {t−1

∫ t
0 T

pi
s (a)ds}t>0 is

weakly∗ convergent for every a ∈ piApi . Suppose that μ is any state such that s(μ),
the support of μ, satisfies s(μ) ≤ pi for some i . By [11, Theorem 3.13], we have

w- lim
t→∞

1

t

∫ t

0
T pi∗s (μ)ds = ρi,∞.

We notice that any invariant state ω is a convex combination of ρi,∞’s:

ω =
k
∑

i=1

λiρi,∞,

k
∑

i=1

λi = 1.

4.2 Mixture of Gaussians in OQRWs

We now consider the QMS in relevance with the OQRWs on the crystal lattices intro-
duced in Sect. 2.2. The finite-dimensional Hilbert space is then h = ⊕u∈V0hu . Let
T = (Tt )t≥0 be the QMS on A = B(h) with the (bounded) GKSL generator in (4.1)
for H = 0 and {L j } = {B(e)}e∈A(G0). Since

∑

e B(e)∗B(e) = I , we have

L(x) =
∑

e∈A(G0)

B(e)∗x B(e) − x, x ∈ A, (4.4)

and the dual generator becomes

L∗(ρ) =
∑

e∈A(G0)

B(e)ρB(e)∗ − ρ, ρ ∈ A∗. (4.5)

As was noticed in the previous subsection, we have Ih = pR ⊕ pT , where pR and pT
are the fast recurrent and transient subspaces for T , respectively. LetM be the OQRW
in (2.7) on a crystal lattice G = (V , A), which is a covering graph of G0 = (V0, E0).
We assume that the hypothesis (H2) holds for the QMS on A = B(h) with GKSL
generator in (4.4).

Lemma 4.2 Under the hypothesis (H2), it holds that

B(e)pi = pi B(e)pi , B(e)∗ pi = pi B(e)∗ pi , e ∈ A(V0), i = 1, · · · , k.

Proof It follows from [5, Theorem 5.7]. ��
Let us define Bi (e) := pi B(e)pi , i = 1, · · · , k, e ∈ A(G0). The reduced semi-

group T pi is nothing but the QMS on Ai = piApi with the GKSL generator given
by
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L(i)(x) =
∑

e∈A(G0)

Bi (e)
∗x Bi (e) − x, x ∈ Ai . (4.6)

Now, we know that the QMS T pi is irreducible and has a unique invariant faithful
state ρi,∞, i.e., the equation L(i)∗ (ρi,∞) = 0 holds, where

L(i)∗ (ρ) :=
∑

e∈A(G0)

Bi (e)ρBi (e)
∗ − ρ, ρ ∈ piA∗ pi . (4.7)

For each i = 1, · · · , k, let M(i) be the OQRW defined on the crystal lattice G =
(V , A), which is defined by (2.7) with Le

x ’s being replaced by

Le
i,x := Bi (e) ⊗ |x +̂θ(e)〉〈x |, e ∈ A(G0), x ∈ L, i = 1, · · · , k. (4.8)

Now for each i = 1, · · · , k, the generatorL(i)∗ satisfies the hypothesis (H1). Therefore,
byTheorem3.2, theOQRWM(i) with an initial conditionρ(0) = ρ0⊗|0〉〈0| satisfying
s(ρ0) ≤ pi satisfies the CLT. Let us state it more in detail. For each i = 1, · · · , k,
define

m(i) :=
∑

e∈A(G0)

Tr
(

Bi (e)ρi,∞Bi (e)
∗)
̂θ(e). (4.9)

Also, for each l ∈ R
d , let L(i)

l be a solution (which is unique up to a sum of a constant
multiple of pi ) to the equation

− L(i)(L) =
∑

e∈A(G0)

Bi (e)
∗Bi (e)

(

̂θ(e) · l)− (m(i) · l)pi , L ∈ Ai . (4.10)

Let �(i) = (C (i)
jl )dj,l=1 be a covariance matrix whose elements are given by

C (i)
jl = −m(i)

j m(i)
l +

∑

e∈A(G0)

Tr(Bi (e)ρi,∞Bi (e)
∗)(̂θ(e)) j (̂θ(e))l

+2
∑

e∈A(G0)

Tr(Bi (e)ρi,∞Bi (e)
∗L(i)

e j )(
̂θ(e))l − 2m(i)

j Tr(ρi,∞L(i)
el ). (4.11)

Now, the CLT forM(i) reads as follows.

Proposition 4.3 Suppose that the hypothesis (H2) holds. LetM be an OQRW with an
initial state ρ(0) = ρ0 ⊗|0〉〈0| such that s(ρ0) ≤ pi for some i ∈ {1, 2, · · · , k}. Then,
the position random variables (Xn)n≥0 satisfy a CLT: As n → ∞, (Xn − nm(i))/

√
n

converges in law to a Gaussian distribution N (0, �(i)), where the mean m(i) and
covariance matrix �(i) are given in (4.9) and (4.11), respectively.

Proof Since the subspace pi is invariant for the QMS T (i), the OQRW M becomes
M(i). For M(i), the hypothesis (H1) holds and the statement follows from Theo-
rem 3.2. ��
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Fig. 3 Z
2 with sites of intrinsic two points

The following is a main theorem of this paper.

Theorem 4.4 Let us suppose that the hypothesis (H2) holds. Let ρ(0) := ρ0 ⊗ |0〉〈0|
be an initial state for the OQRW such that

ρ0 =
k
∑

i=1

ρ0,i ,

where s(ρ0,i ) ≤ pi , i = 1, · · · , k. Let λi := Tr(ρ0,i ). Then, with probability λi ,
the position random variables (Xn)n∈N satisfy that as n → ∞, (Xn − nm(i))/

√
n

converges in law to a Gaussian distribution N (0, �(i)), where the mean m(i) and
covariance matrix �(i) are given in (4.9) and (4.11), respectively.

Proof We can say that with probability λi the OQRW starts from an initial state
ρ0,i

Tr(ρ0,i )
⊗ |0〉〈0|. The conclusion follows from Proposition 4.3. ��

Remark 4.5 A similar investigation was done in [1, Theorem 7.3]. There, it was shown
that if the intrinsic Hilbert space (the space h in the present notation) is a direct sum of
some subspaces and moreover if the Kraus operators are invariant on each subspaces,
i.e., they are of block diagonal form, then a mixture of Gaussians would appear in the
limit (see [1, Section 7] for the details). However, no example was provided there.

4.3 Examples

4.3.1 Z
2 with sites of intrinsic two points

Consider the two-dimensional integer latticeZ
2, butwhose sites consist of two intrinsic

points. See Fig. 3. We let V0 = {u, v} and let {ei }i=1,2,3 be the three edges as shown
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in Fig. 3. Let

̂θ(e1) = [1, 0], ̂θ(e2) = [0, 1], ̂θ(e3) = 0,

and̂θ(ei ) = −̂θ(ei ), i = 1, 2, 3. In order to define the operators B(e), e ∈ A(G0), let
hu = hv = C

3, andh = hu⊕hv � C
6. LetU = [u1 u2 u3

]

andV = [v1 v2 v3
]

be3×
3 unitary matrices with column vectors ui = [u1i , u2i , u3i ]T and vi = [v1i , v2i , v3i ]T ,
i = 1, 2, 3. For i = 1, 2, 3, let Ui be a 3 × 3 matrix whose i th column is ui and
remaining columns are zeros. Similarly, let Vi be the 3× 3 matrix, whose i th column
is the vector vi and other columns are zeros. Let us define 6 × 6 matrices B(e),
e ∈ A(G0), whose block matrices are given as follows:

B(e1) =
[

U∗
1 0
0 0

]

, B(e1) =
[

U∗
2 0
0 0

]

, B(e3) =
[

0 0
U∗
3 0

]

,

B(e2) =
[

0 0
0 V ∗

1

]

, B(e2) =
[

0 0
0 V ∗

2

]

, B(e3) =
[

0 V ∗
3

0 0

]

.

We easily check condition (2.4) holds. Then, the OQRW is defined by formula (2.7).
One model. Let us take U = V ≡ UH , where

UH :=
⎡

⎢

⎣

1√
2

− 1√
2
0

1√
2

1√
2

0

0 0 1

⎤

⎥

⎦
. (4.12)

It is not hard to check that the hypothesis (H2) is satisfied with pR = IC3⊕C3 =
p1 + p2 + p3;

p1 = (I2 ⊕ 01) ⊕ 03, p2 = 03 ⊕ (I2 ⊕ 01), p3 = (02 ⊕ I1) ⊕ (02 ⊕ I1),

where Id and 0d mean the d-dimensional identity and zero matrices, respectively. The
invariant states (density matrices) satisfying L∗ = 0 are

ρ1,∞ = 1

2
p1, ρ2,∞ = 1

2
p2, ρ3,∞ = 1

2
p3.

We can easily compute the means m(i) and covariance matrices �(i), i = 1, 2, 3, by
formulas (4.9) and (4.11), respectively, to get

m(1) = m(2) = m(3) = 0, and �(1) =
[

1 0
0 0

]

, �(2) =
[

0 0
0 1

]

, �(3) =
[

0 0
0 0

]

.

For i = 1, 2, 3, let μ(i) be the two-dimensional Gaussian distributed as N (0, �(i)).
By Theorem 4.4, for an initial state ρ(0) = ρ0 ⊗ |0〉〈0| such that ρ0 =∑3

i=1 ρ0,i with
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s(ρ0,i ) ≤ pi , i = 1, 2, 3, the OQRW on the crystal lattice Z
2 with sites of intrinsic

two points satisfies as n → ∞

Xn√
n

(d)−→
3
∑

i=1

λiμ
(i),

where λi = Tr(ρ0,i ), i = 1, 2, 3.
Another model This time let us take U = UH in (4.12) and V = UG , where

UG := 1

3

⎡

⎣

−1 2 2
2 −1 2
2 2 −1

⎤

⎦ . (4.13)

We can check that the hypothesis (H2) is satisfied with pR = IC3⊕C3 = p1 + p2;

p1 = (I2 ⊕ 01) ⊕ 03, p2 = (02 ⊕ I1) ⊕ I3.

The invariant states (density matrices) satisfying L∗ = 0 are

ρ1,∞ = 1

2
p1 and ρ2,∞ = 1

4
p2.

We can compute the means m(i) and covariance matrices �(i), i = 1, 2, by formulas
(4.9) and (4.11), respectively. First, we easily see that m(1) = m(2) = 0. By directly
solving equation (4.10), we get

L(1)
e1 =

[

0 1
1 0

]

, L(1)
e2 =

[

0 0
0 0

]

,

L(2)
e1 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

, L(2)
e2 =

⎡

⎢

⎢

⎣

0 0 0 0
0 −1/4 0 −1/2
0 0 1/4 1/2
0 −1/2 1/2 0

⎤

⎥

⎥

⎦

,

up to a sum of constant multiples of pi for i = 1, 2, respectively. Computing the
covariances from (4.11), we get

�(1) =
[

1 0
0 0

]

and �(2) =
[

0 0
0 1/4

]

.

Therefore, as in the previous example, for an initial state ρ(0) = ρ0 ⊗ |0〉〈0| such that
ρ0 = ∑2

i=1 ρ0,i with s(ρ0,i ) ≤ pi , i = 1, 2, the OQRW in this model satisfies as
n → ∞

Xn√
n

(d)−→
2
∑

i=1

λiμ
(i),
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where λi = Tr(ρ0,i ), and μ(i) is the two-dimensional Gaussian distributed as
N (0, �(i)) for i = 1, 2. Here, we may notice that the variance in the p2-subsystem is
smaller than the one in the p1-subsystem because there is an idling in the former one,
meaning that the walker may stay at the present place without jump, and it results in
the slow spread giving a smaller variance.

4.3.2 Hexagonal lattice

Next, we consider another example on the hexagonal lattice. See Fig. 1. The central
limit theorems for this model were widely studied in [8]. Let us recall some notions
introduced there. We let V0 = {u, v} and let {ei }i=1,2,3 be the three edges in G0 with
o(ei ) = u and t(ei ) = v. (See Fig. 1.) The reversed edges are ei , i = 1, 2, 3. We let

̂θ(e1) = 1√
2
[1, 1], ̂θ(e2) = 1√

2
[−1, 1], ̂θ(e3) = 0,

and̂θ(ei ) = −̂θ(ei ), i = 1, 2, 3. Similar to the previous example, let hu = hv = C
3,

and h = hu ⊕ hv � C
6. Let U = [

u1 u2 u3
]

and V = [

v1 v2 v3
]

be 3 × 3 unitary
matrices with column vectors ui = [u1i , u2i , u3i ]T and vi = [v1i , v2i , v3i ]T , i =
1, 2, 3. For i = 1, 2, 3, letUi be a 3× 3 matrix whose i th column is ui and remaining
columns are zeros. Similarly, let Vi be the 3×3 matrix, whose i th column is the vector
vi and other columns are zeros. Now for i = 1, 2, 3, let ˜Ui and ˜Vi be 6 × 6 matrices
whose block matrices are given as follows:

˜Ui =
[

0 0
Ui 0

]

, ˜Vi =
[

0 Vi
0 0

]

.

We define

B(ei ) := ˜Ui , and B(ei ) := ˜Vi , i = 1, 2, 3.

We check again condition (2.4) holds. Then, the OQRW on the hexagonal lattice is
defined by formula (2.7).

Recall the stochasticmatrices PU and PV introduced in (A.2). The following propo-
sition says that whether the limit behavior of OQRWs on the hexagonal lattice satisfies
a Gaussian or a mixture of Gaussians, it is characterized by the form of the products
PU PV and PV PU .

Proposition 4.6 If the stochastic matrices PU PV and PV PU are irreducible, then the
equation L∗(ρ) = 0 has a unique solution on the states; thereby, the central limit
theorem holds. On the other hand, if PU PV and PV PU are reducible with a common
decomposition into communicating classes, then the hypothesis (H2) is satisfied and
Theorem 4.4 applies resulting in the mixture of Gaussians.

The proof of uniqueness and nonuniqueness for the equation L∗ = 0 according
to the conditions mentioned in the proposition was shown in [8, Proposition 4.1]. By
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the proof there, if PU PV and PV PU are reducible with a common decomposition
{1, 2, 3} = {{1, 2}, {3}} into communicating classes (we take {1, 2, 3} as the state
space for the classical Markov chain), for example, then we have

pR = Ih = p1 + p2,

with

p1 = (I2 ⊕ 01) ⊕ (I2 ⊕ 01) and p2 = (02 ⊕ I1) ⊕ (02 ⊕ I1),

where Id and 0d mean again the identity and zero operator on C
d , respectively. More-

over, the invariant states for each subspaces are

ρ1,∞ = 1

4
p1 and ρ2,∞ = 1

2
p2.

Let us take some concrete examples. First, for CLT, let us take U = V = UG in
(4.13). In this case since

PU PV = PV PU = 1

81

⎡

⎣

33 24 24
24 33 24
24 24 33

⎤

⎦ ,

Proposition 4.6 says that the central limit theorem holds. The concrete computation
of the mean and covariance for this model was done in [8, Subsection 4.2]. Next, we
take U = V = UH given in (4.12). In this case, we have

PU = PV = 1

2

⎡

⎣

1 1 0
1 1 0
0 0 2

⎤

⎦ , (4.14)

and hence, a mixture of Gaussians appears in the limit of the OQRWs. With some
computations, one can show the mean and covariance for each subsystem:

m(1) = m(2) = 0, and �(1) = 1

2

[

1 0
0 0

]

, �(2) =
[

0 0
0 0

]

.

For i = 1, 2, letμ(i) be the Gaussians distributed as N (0, �(i)) (μ(2) = δ0, in fact).
Then by Theorem 4.4, for an initial state ρ(0) = ρ0 ⊗|0〉〈0| such that ρ0 =∑2

i=1 ρ0,i
with s(ρ0,i ) ≤ pi , i = 1, 2, the OQRW in this model satisfies as n → ∞

Xn√
n

(d)−→ λμ(1) + (1 − λ)μ(2),

where λ = Tr(ρ0,1). In “Appendix B,” we check this result by an analytic method
using Fourier transforms.
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5 Discussion

We have investigated when a mixture of Gaussians appears in the limit distribution of
the OQRWs. It depends whether the intrinsic QMS, whose GKSL generator comes
from the Kraus operators of the OQRW, has multiple invariant states or not. We
concretely considered some models on the crystal lattices. We have provided not only
examples of CLT but also examples of a mixture of Gaussians. The crystal lattices we
considered areZ

2 with intrinsic points, the hexagonal, triangular, andKagome lattices.
In order to investigate the general limit theorems, we reviewed the structure of the

invariant states for QMS. For finite dimensionQMSs, we can havemodels in which the
invariant subspaces are orthogonal to each other. For the applications to the OQRWs,
we particularly consider the GKSL generators coming from the Kraus operators for
OQRWs. Some concrete models are constructed on Z

2 with intrinsic two points as
well as on the hexagonal lattices.

In “Appendix A,” we consider some further models for CLT for OQRWs on the
triangular andKagome lattices. It serves as supplementarymodels to the one discussed
in [8], where the CLT for OQRWs on the hexagonal lattices was presented. For the
model on the triangular lattice, we may say that the walk is not of the nearest neighbor
jumps in the two-dimensional lattice. The nearest jumps are to move by ±̂θ1 or ±̂θ2,
where ̂θ1 = 1√

2
[1, 1]T and 1√

2
[−1, 1]T . But, it is possible for the walker to jump

to ±(̂θ1 +̂θ2) = ±√
2[0, 1]T . This effect gives a bigger variance in the y-direction.

See (A.7). For the Kagome lattice, we have constructed a simplest example showing
Gaussian limit. Since the structure of Kagome lattice is rather complex comparing
with triangular or hexagonal lattices, it is much harder to check the uniqueness of the
invariant state for the Markov generator (3.1). (See Lemma A.1.) However, it leaves
us with many rooms to construct different kinds of walks.

In Appendix B, we introduce another method to get limit theorems for OQRWs,
namely the Fourier analysis developed in [8]. We see that the two different methods
give the same results.

Finally, we would like to mention an open problem. The main result Theorem 4.4
and the examples that follow deal with the initial states of block diagonal form, i.e.,
direct sum of restrictions whose supports are smaller than the corresponding sub-
harmonic projections. The most general result would be the knowledge on the limit
distributions for arbitrary initial conditions.

Acknowledgements Weare grateful to Professor Franco Fagnola and ProfessorVeronicaUmanita formany
helpful discussions and giving us reference [11]. We thank Mrs. Yoo Jin Cha for helping with figures. The
research by H. J. Yoo was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03936006).

A Examples: central limit theorem

In this Appendix, we consider some more examples satisfying the CLT. The examples
of OQRWs on the hexagonal lattice were investigated in [8]. Here, we consider the
examples for the triangular and Kagome lattices.
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Fig. 4 Triangular lattice

A.1 Triangular lattice

Triangular lattice is a crystal lattice that is depicted in R
2. Look at Figure 4.

A.1.1 Preparation

We let V0 = {u} and let {ei }i=1,2,3 be the three self-loops inG0 with o(ei ) = t(ei ) = u.
(See Figure 4.) The reversed self-loops are denoted by ei , i = 1, 2, 3. It is natural to
define h ≡ hu = C

6 and find six matrices B(e), e ∈ A(G0), of size 6 × 6 that satisfy
(2.4). However, it is toomuch to investigate all the general cases. Here, we focus on the
simple examples that satisfy the central limit theorems. For that, we let h = C

3 ⊕ C
3

and consider 3 × 3 block matrices for B(e), e ∈ A(G0), as follows. We remark that
the following construction is very similar to the example for hexagonal lattice studied
in [8]. First, we let

̂θ(e1) = 1√
2
[1, 1], ̂θ(e2) = 1√

2
[−1, 1], ̂θ(e3) = [0,−√

2],

and̂θ(ei ) = −̂θ(ei ), i = 1, 2, 3. In order to define the operators B(e), e ∈ A(G0), let
U = [

u1 u2 u3
]

and V = [

v1 v2 v3
]

be 3 × 3 unitary matrices with column vectors
ui = [u1i , u2i , u3i ]T and vi = [v1i , v2i , v3i ]T , i = 1, 2, 3. For i = 1, 2, 3, let Ui be a
3 × 3 matrix whose i th column is ui and the remaining columns are zeros. Similarly,
let Vi be the 3 × 3 matrix, whose i th column is the vector vi and other columns are
zeros. For i = 1, 2, 3, let ˜Ui and ˜Vi be 6× 6 matrices whose block matrices are given
as follows:

˜Ui =
[

0 0
Ui 0

]

, ˜Vi =
[

0 Vi
0 0

]

.
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Now, we define

B(ei ) := ˜Ui , and B(ei ) := ˜Vi , i = 1, 2, 3.

Then, B(ei ), B(ei ), i = 1, 2, 3 satisfy condition (2.4).
It is easy to check that a state ρ ∈ E(h) is a solution to the equation L∗(ρ) = 0,

where L∗(ρ) was defined in (3.1), if and only if ρ = ρ1 ⊕ ρ2 and it holds that

ρ1 =
3
∑

i=1

Viρ2V
∗
i , ρ2 =

3
∑

i=1

Uiρ1U
∗
i . (A.1)

Let us consider the following (doubly) stochastic matrices:

PU :=
⎡

⎣

|u11|2 |u21|2 |u31|2
|u12|2 |u22|2 |u32|2
|u13|2 |u23|2 |u33|2

⎤

⎦ , PV :=
⎡

⎣

|v11|2 |v21|2 |v31|2
|v12|2 |v22|2 |v32|2
|v13|2 |v23|2 |v33|2

⎤

⎦ . (A.2)

It was shown in [8, Proposition 4.1] that if the stochastic matrices PU PV and PV PU
are irreducible, then the equation L∗(ρ) = 0 has a unique state solution ρ = ρ1 ⊕ ρ2
with ρ1 = ρ2 = 1

6 I .

Example: nonzero covariance

Let us take U = V = UG , where

UG = 1

3

⎡

⎣

−1 2 2
2 −1 2
2 2 −1

⎤

⎦ . (A.3)

It is obvious that PU PV = PV PU is irreducible, where PU and PV are defined in
(A.2). Therefore, the equation L∗(ρ) = 0 has a unique state solution ρ = 1

6 I ⊕ 1
6 I .

From equation (3.2), it is easy to see that m = 0. By directly computing from (3.3),
we get, up to a sum of a constant multiple of identity,

L1 = L1,u ⊕ L1,v, L1,u =
⎡

⎣

3 0 0
0 3

2 0
0 0 0

⎤

⎦ , L1,v =
⎡

⎣

0 0 0
0 3

2 0
0 0 3

⎤

⎦

and

L2 = L2,u ⊕ L2,v, L2,u =
⎡

⎣

3
2 0 0
0 3 0
0 0 0

⎤

⎦ , L2,v =
⎡

⎣

3
2 0 0
0 0 0
0 0 3

⎤

⎦ .
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Notice that the transformation matrix � in (2.1) is given by

� = 1√
2

[

1 −1
1 1

]

. (A.4)

By the linearity of equation (3.3), we have (see [8, Remark 3.6])

Lei =
2
∑

j=1

�i j L j , i = 1, 2. (A.5)

Therefore, we get

Le1 = �11L1 + �12L2 = Le1,1 ⊕ Le1,2, Le1,1 = −Le1,2 = 3

2
√
2

⎡

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎦ ,

and

Le2 = �21L1 + �22L2 = Le2,1 ⊕ Le2,2

with

Le2,1 = 9

2
√
2

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ , Le2,2 = 3

2
√
2

⎡

⎣

1 0 0
0 1 0
0 0 4

⎤

⎦ .

Now, we are ready to compute the covariance matrix � given in (3.4). Since the mean
m is zero and ρ∞ = 1

6 I , we are left with

Ci j = 1

6

∑

e∈A(G0)

Tr(B(e)B(e)∗)(̂θ(e))i (̂θ(e)) j

+1

3

∑

e∈A(G0)

Tr(B(e)B(e)∗Lei )(
̂θ(e)) j

=: C (1)
i j + C (2)

i j . (A.6)

For the first term C (1)
i j , the trace part is all 1 and thus we get

C (1) =
[ 1
3 0
0 1

]

.
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For the second term C (2)
i j , computations before taking trace give us

∑

e∈A(G0)

(B(e)B(e)∗)(̂θ(e)) j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
3
√
2

⎛

⎜

⎝

⎡

⎢

⎣

1 0 2

0 −1 −2

2 −2 0

⎤

⎥

⎦⊕
⎡

⎢

⎣

−1 0 −2

0 1 2

−2 2 0

⎤

⎥

⎦

⎞

⎟

⎠ , j = 1,

1
3
√
2

⎛

⎜

⎝

⎡

⎢

⎣

1 4 −2

4 1 −2

−2 −2 −2

⎤

⎥

⎦⊕
⎡

⎢

⎣

−1 −4 2

−4 −1 2

2 2 2

⎤

⎥

⎦

⎞

⎟

⎠ , j = 2,

and so we get

C (2) =
[ 1
3 0
0 1

]

.

Thus, summing those two terms we get the covariance matrix

� = C (1) + C (2) = 2

[ 1
3 0
0 1

]

. (A.7)

The characteristic function for the Gaussian random variable X with mean zero and
covariance � in (A.7) is

E(ei〈t,X〉) = e− 1
3 (t21+3t22 ).

We notice that the variance in the horizontal line (x-axis) is smaller than that in
the vertical line (y-axis). This reflects that fact that along the vertical line there are
“roads” (the vectorŝθ(e3) and̂θ(e3)) through which the walker can travel.

Example: zero covariance

Let us consider one more example for the model of OQRW on the triangular lattice.
This time, let us take U = UG in (A.3) and V = I . In this case, the matrices PU PV
and PV PU are also irreducible and hence the equation L∗(ρ) = 0 has a unique state
solution ρ∞ = 1

6 I . From equation (3.2), it is easy to see that m = 0. As before, the
solutions of (3.3) are, up to a sum of constant multiple of identity,

L1 = L1,u ⊕ L1,v, L1,u =
⎡

⎣

1 0 0
0 0 0
0 0 −1

⎤

⎦ , L1,v = 0,

and

L2 = L2,u ⊕ L2,v, L2,u =
⎡

⎣

0 0 0
0 1 0
0 0 −1

⎤

⎦ , L2,v = 0.
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Fig. 5 Kagome lattice

Recall � in (A.4). We then get

Le1 = �11L1 + �12L2 = Le1,u ⊕ Le1,v, Le1,u = 1√
2

⎡

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎦ , Le1,v = 0,

and

Le2 = �21L1 + �22L2 = Le2,u ⊕ Le2,v, Le2,u = 1√
2

⎡

⎣

1 0 0
0 1 0
0 0 −2

⎤

⎦ , Le2,v = 0.

The covariance matrix can be computed as before, and we get � = 0. Now, the
measure is a Gaussian and the mean and covariance are all zero; this means that it is
a Dirac measure at the origin.

A.2 Kagome lattice

In this subsection,we consider theOQRWson theKagome lattice. Look at theKagome
lattice in Fig. 5.

We let V0 = {1, 2, 3} by naming the vertices with numbers. For 1 ≤ i �= j ≤ 3,
we let {ei j , fi j } be the 12 directed edges in G0 with a convention o(ei j ) = j and
t(ei j ) = i and similarly for fi j ’s. We notice that ei j = e ji and f i j = f j i . We let

̂θ(e12) = ̂θ(e21) = ̂θ(e13) = ̂θ(e31) = 0,

̂θ(e23) = ̂θ( f13) = −̂θ(e32) = −̂θ( f31) = 1√
2
[1, 1],
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and

̂θ( f12) = ̂θ( f32) = −̂θ( f21) = −̂θ( f23) = 1√
2
[−1, 1].

In order to define the operators B(e), e ∈ A(G0), let h1 = h2 = h3 = C
4, and

h = h1 ⊕ h2 ⊕ h3 = C
12. Let H be a 2 × 2 unitary matrix given by

H = 1√
2

[

1 1
−1 1

]

=: L + R,

where

L := 1√
2

[

1 0
−1 0

]

, R := 1√
2

[

0 1
0 1

]

.

Notice that

L∗L =
[

1 0
0 0

]

=: P1, R∗R =
[

0 0
0 1

]

=: P2,

LL∗ = 1

2

[

1 −1
−1 1

]

, RR∗ = 1

2

[

1 1
1 1

]

.

Let UL , UR , VL , and VR be 4 × 4 matrices given by

UL =
[

0 0
L 0

]

, UR =
[

0 0
R 0

]

, VL =
[

0 L
0 0

]

, VR =
[

0 R
0 0

]

.

Notice that

U∗
LUL =

[

P1 0
0 0

]

, U∗
RUR =

[

P2 0
0 0

]

,

V ∗
L VL =

[

0 0
0 P1

]

, V ∗
RVR =

[

0 0
0 P2

]

.

For i, j = 1, 2, 3 (i �= j), let Ui j and Vi j be 12 × 12 matrices whose block matrices
are given as follows:

U21 =
⎡

⎣

0 0 0
UL 0 0
0 0 0

⎤

⎦ , U31 =
⎡

⎣

0 0 0
0 0 0
UR 0 0

⎤

⎦ , U32 =
⎡

⎣

0 0 0
0 0 0
0 UL 0

⎤

⎦ ,

U12 =
⎡

⎣

0 UR 0
0 0 0
0 0 0

⎤

⎦ , U13 =
⎡

⎣

0 0 UL

0 0 0
0 0 0

⎤

⎦ , U23 =
⎡

⎣

0 0 0
0 0 UR

0 0 0

⎤

⎦ ,
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and

V21 =
⎡

⎣

0 0 0
VL 0 0
0 0 0

⎤

⎦ , V31 =
⎡

⎣

0 0 0
0 0 0
VR 0 0

⎤

⎦ , V32 =
⎡

⎣

0 0 0
0 0 0
0 VL 0

⎤

⎦ ,

V12 =
⎡

⎣

0 VR 0
0 0 0
0 0 0

⎤

⎦ , V13 =
⎡

⎣

0 0 VL

0 0 0
0 0 0

⎤

⎦ , V23 =
⎡

⎣

0 0 0
0 0 VR

0 0 0

⎤

⎦ .

Now, we define

B(ei j ) := Ui j and B( fi j ) := Vi j , i = 1, 2, 3 (i �= j).

Then, B(ei j ), B( fi j ), i, j = 1, 2, 3 (i �= j) satisfy condition (2.4).

Lemma A.1 The equation L∗(ρ) = 0 for the states, where L∗(ρ) was defined in (3.1),
has a unique solution ρ∞ = 1

12 I ⊕ 1
12 I ⊕ 1

12 I ∈ E(h).

Proof It is easy to check that a state ρ ∈ E(h) solves the equation L∗(ρ) = 0 if and
only if it has the form ρ = ρ(1) ⊕ ρ(2) ⊕ ρ(3) and satisfies

ρ(1) = URρ(2)U∗
R + VRρ(2)V ∗

R +ULρ(3)U∗
L + VLρ(3)V ∗

L ,

ρ(2) = URρ(3)U∗
R + VRρ(3)V ∗

R +ULρ(1)U∗
L + VLρ(1)V ∗

L ,

ρ(3) = URρ(1)U∗
R + VRρ(1)V ∗

R +ULρ(2)U∗
L + VLρ(2)V ∗

L . (A.8)

From equations (A.8), we see that the matrices ρ(i), i = 1, 2, 3, are block matrices of
the form

ρ(i) =
[

ρ
(i)
1 0
0 ρ

(i)
2

]

, i = 1, 2, 3; (A.9)

here, ρ(i)
j , j = 1, 2, are 2 × 2 matrices, say

ρ
(i)
j :=

[

ρ
(i)
j (1, 1) ρ

(i)
j (1, 2)

ρ
(i)
j (2, 1) ρ

(i)
j (2, 2)

]

.

Using the form in (A.9), we can rewrite (A.8) in the following form:

ρ = SρS∗, (A.10)
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where ρ and S are 12 × 12 block matrices defined by

ρ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ
(1)
1 0 0 0 0 0
0 ρ

(1)
2 0 0 0 0

0 0 ρ
(2)
1 0 0 0

0 0 0 ρ
(2)
2 0 0

0 0 0 0 ρ
(3)
1 0

0 0 0 0 0 ρ
(3)
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 R 0 L
0 0 R 0 L 0
0 L 0 0 0 R
L 0 0 0 R 0
0 R 0 L 0 0
R 0 L 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.11)

It is easy to check that S is a unitary matrix. Therefore, by multiplying S∗ and S
from left and right, respectively, to equation (A.10) we also have

ρ = S∗ρS. (A.12)

From (A.12), we see that ρ(i)
j are diagonal matrices:

ρ
(i)
j :=

[

ρ
(i)
j (1, 1) 0

0 ρ
(i)
j (2, 2)

]

, i = 1, 2, 3, j = 1, 2. (A.13)

Now equating the first block in (A.10) and (A.12), we get

ρ
(1)
1 = Rρ

(2)
2 R∗ + Lρ

(3)
2 L∗ = L∗ρ(2)

2 L + R∗ρ(3)
2 R,

or

[

ρ
(1)
1 (1, 1) 0

0 ρ
(1)
1 (2, 2)

]

= 1

2
ρ

(2)
2 (2, 2)

[

1 1
1 1

]

+ 1

2
ρ

(3)
2 (1, 1)

[

1 −1
−1 1

]

(A.14)

= 1

2

[

ρ
(2)
2 (1, 1) + ρ

(2)
2 (2, 2) 0

0 ρ
(3)
2 (1, 1) + ρ

(3)
2 (2, 2)

]

. (A.15)

Looking at the off-diagonal components, we get

ρ
(2)
2 (2, 2) = ρ

(3)
2 (1, 1).

Applying this relation to (A.15) and (A.14), we easily get

ρ
(1)
1 (1, 1) = ρ

(2)
2 (2, 2) = ρ

(3)
2 (1, 1) = ρ

(1)
1 (2, 2) = ρ

(2)
2 (1, 1) = ρ

(3)
2 (2, 2).
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That is, ρ(1)
1 = ρ

(2)
2 = ρ

(3)
2 . Using the cyclic symmetry, we obtain that all six matrices

ρ
(i)
j , i = 1, 2, 3, j = 1, 2, are the same to each other. Taking into account that ρ is a

state, we conclude ρ = 1
12 I ⊕ 1

12 I ⊕ 1
12 I ∈ E(h) and the proof is completed. ��

Let us compute the mean m and covariance matrix �. From equation (3.2), it is
easy to see that m = 0. By directly computing from (3.3), we see that, up to a sum of
a constant multiple of identity,

L1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤

⎥

⎥

⎦

,

and

L2 =

⎡

⎢

⎢

⎣

3 0 0 0
0 1 0 0
0 0 0 0
0 0 0 2

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 3 0
0 0 3 3

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 0

⎤

⎥

⎥

⎦

.

Notice that

� = 1√
2

[

1 −1
1 1

]

.

Therefore, we get by (A.5)

Le1 = 1√
2

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

,

and

Le2 = 1√
2

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

4 0 0 0
0 2 0 0
0 0 0 0
0 0 0 2

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 4

⎤

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎣

1 0 0 0
0 5 0 0
0 0 4 0
0 0 0 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

.

Now, we are ready to compute the covariance matrix � given in (3.4). Since the
mean m is zero and ρ∞ = 1

12 I ⊕ 1
12 I ⊕ 1

12 I , we are left with

Ci j = 1

12

∑

e∈A(G0)

Tr(B(e)B(e)∗)(̂θ(e))i (̂θ(e)) j

+1

6

∑

e∈A(G0)

Tr(B(e)B(e)∗Lei )(
̂θ(e)) j
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=: C (1)
i j + C (2)

i j . (A.16)

For the first term C (1)
i j , the trace part is all 1 and thus we get

C (1) = 1

3
I .

For the second term C (2)
i j , the terms, before taking trace, are given by

∑

e∈A(G0)

(B(e)B(e)∗)(̂θ(e)) j

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2
√
2

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

0 −2 0 0

−2 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎢

⎣

2 0 0 0

0 2 0 0

0 0 1 1

0 0 1 1

⎤

⎥

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎢

⎣

−2 0 0 0

0 −2 0 0

0 0 −1 1

0 0 1 −1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

, j = 1,

1
2
√
2

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎢

⎣

−2 0 0 0

0 −2 0 0

0 0 1 1

0 0 1 1

⎤

⎥

⎥

⎥

⎦

⊕

⎡

⎢

⎢

⎢

⎣

0 −2 0 0

−2 0 0 0

0 0 −1 1

0 0 1 −1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

, j = 2.

Then, we get

C (2) = 1

6

[−1 −1
−1 3

]

.

Thus, the covariance matrix is

� = C (1) + C (2) = 1

6

[

1 −1
−1 5

]

. (A.17)

Notice that the covariance matrix (A.17) has eigenvalues 1
6 (3 ± √

5) with corre-

sponding eigenvectors [2 ∓ √
5, 1]T .

B Analytic proof of mixture of Gaussians for the hexagonal lattice

Let us recall the Fourier analysis on the crystal lattices and consider a dual process
which was developed in [8,9]. For a function f : L → C, its Fourier transform
̂f : �(T2) → C is defined by

̂f (k) :=
∑

x∈L
e−i〈k,x〉 f (x), (B.1)
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and the inverse relation is given by

f (x) = 1

| det�|
1

(2π)2

∫

�(Td )

ei〈k,x〉
̂f (k)dk, x ∈ L..

(See [8, Section 5.1] for the details.) If ρ(0) is the initial condition, then the state at
nth step is given in the Fourier transform space by [7]

̂ρ(n)(k) =
⎛

⎝

∑

e∈A(G0)

e−i〈k,̂θ(e)〉LB(e)RB(e)∗

⎞

⎠

n

̂ρ(0)(k), k ∈ �(T2). (B.2)

Here, LA and RA are the left and right multiplication operators by A, respectively:

L A(B) := AB, RA(B) := BA.

The dual process is the process (Yn(k))k∈�(T2) ∈ ̂A given by

Yn(k) :=
⎛

⎝

∑

e∈A(G0)

e−i〈k,̂θ(e)〉LB(e)∗ RB(e)

⎞

⎠

n

(Ih). (B.3)

Then, it holds that

p(n)
x = 1

| det�|
1

(2π)2

∫

�(T2)

ei〈k,x〉Tr
(

̂ρ(0)(k)Yn(k)
)

dk, x ∈ L.

In other words, the Fourier transform of the probability density (p(n)
x )x∈L at time

n is given by
̂
p(n)· (k) = Tr

(

̂ρ(0)(k)Yn(k)
)

, k ∈ �(T2). (B.4)

Let us focus on the situation where a mixture of Gaussians appears. Thus, suppose that
PU PV and PV PU are reducible with a common decomposition into communicating
classes, say {{1, 2}, {3}} assuming the stochasticmatrices PU PV and PV PU are defined
on the state space {1, 2, 3}. Put

D(k) := diag(e−i〈k,̂θ1〉, e−i〈k,̂θ2〉, 1),

where diag(a, b, c) means the diagonal matrix with entries a, b, and c. We can show
(cf. [8, Example 5.3]) that

Yn(k) = An(k) ⊕ Bn(k);
An(k) = diag(an,1(k), an,2(k), an,3(k)), Bn(k) = diag(bn,1(k), bn,2(k), bn,3(k)),

(B.5)
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where the components satisfy the following recurrence relations:

⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = D(k)PU

⎡

⎣

bn−1,1(k)

bn−1,2(k)

bn−1,3(k)

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = D(k)∗PV

⎡

⎣

an−1,1(k)

an−1,2(k)

an−1,3(k)

⎤

⎦ .

(B.6)
Therefore, we get

⎡

⎣

an,1(k)

an,2(k)

an,3(k)

⎤

⎦ = ˜An(k)

⎡

⎣

1
1
1

⎤

⎦ ,

⎡

⎣

bn,1(k)

bn,2(k)

bn,3(k)

⎤

⎦ = ˜Bn(k)

⎡

⎣

1
1
1

⎤

⎦ . (B.7)

Here, the matrices ˜An(k) and ˜Bn(k) are given by

˜An(k) =
{

(D(k)PU D(k)∗PV )m, n = 2m,

(D(k)PU D(k)∗PV )mD(k)PU , n = 2m + 1,
(B.8)

˜Bn(k) =
{

(D(k)∗PV D(k)PU )m, n = 2m,

(D(k)∗PV D(k)PU )mD(k)∗PV , n = 2m + 1.
(B.9)

By the assumption, we see that the operators ˜An(k) and ˜Bn(k) are block diagonal
matrices acting on C

2 ⊕ C. And since it is irreducible for each block, when we
restrict on each block, the map L∗ has a unique invariant state (see the proof of [8,
Proposition 4.1]). Therefore, for any λ ∈ [0, 1], the following states (density matrices)
are all invariant states satisfying L∗(ρ(λ)) = 0:

ρ(λ) = λη + (1 − λ)ξ, η = 1

2
η0 ⊕ 1

2
η0, ξ = 1

2
ξ0 ⊕ 1

2
ξ0 (B.10)

with

η0 :=
⎡

⎣

1
2 0 0
0 1

2 0
0 0 0

⎤

⎦ , ξ0 :=
⎡

⎣

0 0 0
0 0 0
0 0 1

⎤

⎦ .

For a concrete model, let us consider U = V = UH in (4.12). By (4.14), PU PV and
PV PU are reducible with a common communicating classes. There are infinitely many
solutions to the equation L∗(ρ) = 0, and in fact, for any λ ∈ [0, 1], the states ρ(λ) in
(B.10) are all invariant states.
A Gaussian Let us take the initial state

ρ(0) = ρ
(0)
1 :=

(

1

2
η0 ⊕ 1

2
η0

)

⊗ |0〉〈0|. (B.11)
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Hence, we havêρ(0)(k) = 1
2η0 ⊕ 1

2η0. Therefore, putting u := [1, 1, 1]T and u0 :=
1√
2
[1, 1, 0]T we see that (use also ˜Bn(k) = ˜An(k))

̂
p(n)· (k) = Tr

(

̂ρ(0)(k)Yn(k)
)

= Re〈u0, ˜An(k)u0〉.

Putting θ j = −〈k,̂θ j 〉, j = 1, 2, for simplicity, we have D = diag(eiθ1 , eiθ2 , 1). By
defining P± := D±1/2PD∓1/2, we can write

˜An =
{

D1/2(P+P−)mD1/2, n = 2m + 1,

D1/2(P+P−)m−1P+D−1/2, n = 2m.

(We have used Pu = u.) Consider firstly n = 2m + 1. Putting u± := D±1/2u0, we
have

̂
p(n)· (k) = Re〈u−, (P+P−)mu+〉, (n = 2m + 1)

We notice that D and P , and hence P± also, are invariant on the range of P⊥
1 , i.e.,

the two-dimensional subspace generated by the first two components of the vectors in
C
3. Therefore, without loss of generality, we may let

u0 := 1√
2
[1, 1]T , D := diag(eiθ1 , eiθ2), P =

[ 1
2

1
2

1
2

1
2

]

.

We notice that

P± = |u±〉〈u±|.

By directly computing, we get

(P+P−)|u+〉 = μ2|u+〉
(P+P−)|u−〉 = 〈u+, u−〉|u+〉.

Here,

μ := |〈u+, u−〉| = 1

2

∣

∣

∣eiθ1 + eiθ2
∣

∣

∣ .

Therefore,

̂
p(n)· (k) = Re〈u−, (P+P−)mu+〉 = μ2mRe〈u−, u+〉 = 1

2
(cos θ1 + cos θ2)μ

2m .

Now, let us consider the asymptotics of
̂
p(n)· (k) for large n. Let Xn ∈ L be the

position of the walker at time n. We want to see the behavior of Xn/
√
n at large time
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by computing E

[

ei〈t,Xn/
√
n〉
]

, which is nothing but
̂
p(n)· (−t/

√
n) by (B.1). Then,

formerly defined θ j = −〈k,̂θ j 〉 becomes now θ j = 1√
n
〈t,̂θ j 〉, j = 1, 2, and we get

1

2
(cos θ1 + cos θ2) = 1 + O

(

1

n

)

,

μ2 = 1

2
(1 + cos(θ1 − θ2)) = 1 − ε2(t)

4n
+ O

(

1

n2

)

,

where ε2(t) = 〈t,̂θ1 −̂θ2〉2. Therefore, as n → ∞,

E

[

ei〈t,Xn/
√
n〉] = ̂

p(n)· (−t/
√
n) → e− 1

8 ε2(t) = e− 1
4 t

2
1 .

We conclude that Xn/
√
n converges weakly to a Gaussian with covariance

� = 1

2

[

1 0
0 0

]

. (B.12)

The limit as n goes to infinity with even numbers can be computed similarly, and it
gives the same result as the above. It is easy to guess the above result from the dynamics
of the walk. In fact, the movements in the y-direction are just an oscillation between
the coordinates {−1/

√
2, 0, 1/

√
2}. Therefore, the variance in the y-direction of the

scaled walk by 1/
√
n converges to 0 as (B.12) shows.

Another Gaussian Let us take the initial state

ρ(0) = ρ
(0)
2 :=

(

1

2
ξ0 ⊕ 1

2
ξ0

)

⊗ |0〉〈0|. (B.13)

Put v0 := [0, 0, 1]T and P2 which is the projection onto the third component space so

that v0 = P2u. Now, we havêρ(0)(k) = 1
2ξ0 ⊕ 1

2ξ0. Therefore,

̂
p(n)· (k) = Tr

(

̂ρ(0)(k)Yn(k)
)

= Re〈v0, ˜An(k)v0〉.

Here, we have used again the fact that ˜Bn(k) = ˜An(k). Clearly, we have

̂
p(n)· (k) = 1.

This means that the measure is a Dirac measure at the origin. From the dynamics of
the walk, it is obvious why we have Dirac measure. In fact, from the initial condition,
the walk never moves out of the origin.
A mixture of Gaussians Let us consider an initial condition given by a convex com-
bination of the preceding examples:

ρ
(0)
λ := λρ

(0)
1 + (1 − λ)ρ

(0)
2 ,
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where ρ
(0)
1 and ρ

(0)
2 are in (B.11) and (B.13), respectively. As we have seen in the pre-

ceding examples, the statesρ
(0)
1 andρ

(0)
2 nevermix as the dynamics goes on. Therefore,

we see that as n → ∞, Xn/
√
n converges weakly to the mixture of Gaussians

λμ(1) + (1 − λ)δ0,

where μ(1) is a Gaussian with mean 0 and covariance � in (B.12).
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