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1. Introduction

Since the quantum walk (QW, hereafter) was introduced in mathematical way, the
weak limit theory is nowadays well-known at least for one-dimensional two-state
walks. When divided by a linear scale in time, the distribution of QW converges
weakly. For details, we refer to Refs. 1, 4, 9–12, 16.

The linear scale of propagation in the QW, which is compared to the square root
rate in the classical random walk, can be used to speed up a quantum algorithm.2

On the other hand, an opposite property, called localization, has also been observed
in QWs, which causes exponential suppression of computations. See Refs. 5, 8, 13,
17 and 21.

In this paper we investigate one-dimensional three-state QWs in discrete time,
which is motivated by Ref. 6. By a three-state, it means that the intrinsic structure,
or a coin space, has a degree of 3. Two of them represent the left- and right-chirality,
as usual, and the remaining one is for the central chirality. By this defining property,
one guesses that there may occur a localization in this model and in fact it is shown
to be true for the Grover walk in Refs. 3, 6, 15 and 19. The purpose of this paper is
to discuss the distribution and localization property for the general one-dimensional
three-state QWs. We remark here that we discuss the scaled limit distribution and
therefore the localization is also understood in that point of view (Definition 4.1).
However, it turns out that it is equivalent to the concept generally used in the
literature. See Theorem 4.10.

We briefly summarize the contents of this paper. In Sec. 2, we introduce the def-
inition of one-dimensional three-state QWs. In Sec. 3, we discuss the scaled limit
distribution and moments. We represent the dynamics in the Fourier transform
space and find a characteristic function of the scaled limit distribution. It is rep-
resented as a vacuum (or initial state) expectation. We consider some examples
including a Grover walk and a natural extension of two-state walk to three-state
walk. Section 4 deals with a localization problem, which is another main topic of
this paper. We give necessity and sufficiency for the occurrence of a localization.
For the characterization we use the representation formula for the moments and
investigate the eigenvalues and eigenvectors of the generator of the QW evolution.
We end with some examples.

2. Preliminaries

The definition of QWs in mathematical way can be found in several papers. See
for example, Refs. 1, 4, 11, 12 and 16. Here we follow the description introduced in
Ref. 9 modifying for three-state walks.

A quantum particle has an intrinsic degree of freedom, called chirality. This
chirality is represented by a 3-dimensional vector: we represent them in C3 and call
the vectors [1 0 0]T , [0 1 0]T , and [0 0 1]T , the left, center, and right chi-
rality, respectively, in that order. Here, and later, [a b c]T denotes the transpose
of the vector [a b c]. The spatial movement of the particle is given as follows. At
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time n ∈ N0 = {0, 1, 2, . . .}, the probability amplitude of finding the particle at site
x ∈ Z with chirality state being left, center or right is given by a three-components
vector

ψn(x) =

ψn(1;x)

ψn(2;x)

ψn(3;x)

 ∈ C3. (2.1)

After one unit of time the chirality is rotated by an a priori given unitary matrix
U . According to the final chirality state, if the particle ends up with left chirality,
then it moves one step to the left, if it ends up with central chirality, it stays at
the present position, and if it ends up with right chirality, it moves one step to the
right. For a detailed description, let a unitary 3 × 3 matrix U be given by:

U =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =: L+ C +R; (2.2)

L =

a11 a12 a13

0 0 0
0 0 0

, C =

 0 0 0
a21 a22 a23

0 0 0

, R =

 0 0 0
0 0 0
a31 a32 a33

. (2.3)

Then the dynamics for ψn = (ψn(x))x∈Z is given by

ψn+1(x) = Lψn(x+ 1) + Cψn(x) +Rψn(x− 1). (2.4)

Next we describe the dynamics in a Fourier transform space. For each x ∈ Z,
let Hx := C3 be a copy of the chirality space. Let

H := ⊕x∈ZHx (2.5)

be the direct sum Hilbert space, on which the evolution of a QW will be developed.
Notice that H is isomorphic to the Hilbert spaces l2(Z,C3) and l2(Z) ⊗ C3. For
each x ∈ Z, let

ex(k) :=
1√
2π
eixk, k ∈ K := (−π, π], (2.6)

K being understood as a unit circle in R2. The set {ex}x∈Z defines an orthonormal
basis in L2(K). For each k ∈ K, let hk be a copy of C3 and let

Ĥ :=
∫ ⊕

K

hkdk ≈ L2(K,C3) ≈ L2(K) ⊗ C3 (2.7)

be the direct integral of Hilbert spaces. The Fourier transform between l2(Z) and
L2(K) naturally extends to a unitary map from H to Ĥ by

ψ =


ψ(1;x)

ψ(2;x)

ψ(3; k)



x∈Z

∈ H �→ ψ̂ =



ψ̂(1; k)

ψ̂(2; k)

ψ̂(3; k)



k∈K

∈ Ĥ, (2.8)
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where

ψ̂(i; k) =
∑
x∈Z

ψ(i;x)ex(k), i = 1, 2, 3. (2.9)

Its inverse is given by ψ̂ �→ ψ with

ψ(x) =
∫ π

−π

1√
2π
e−ixkψ̂(k)dk ∈ Hx.

Let us denote by T the left translation in l2(Z):

(Ta)(x) = a(x+ 1), for a = (a(x))x∈Z. (2.10)

T is a unitary map whose adjoint is the right translation:

(T ∗a)(x) = a(x− 1), for a = (a(x))x∈Z. (2.11)

The operator T naturally extends to H = ⊕x∈ZHx and for the sake of simplicity
we use the same notation T for the extension. Given an operator (3 × 3 matrix) B
on C3, we let

B̃ := ⊕x∈ZB (2.12)

be the bounded direct sum operator acting on H.
With these preparations we can rewrite the dynamics of a QW as an evolution

map in the Hilbert space H. Notice that Eq. (2.4) is the same as

ψn+1(x) = L(Tψn)(x) + Cψn(x) +R(T ∗ψn)(x), x ∈ Z, (2.13)

which we can write in a single equation:

ψn+1 = (L̃T + C̃ + R̃T ∗)ψn. (2.14)

It is not hard to see that the operator L̃T + C̃ + R̃T ∗ is a unitary operator on H.
Thus the solution to (2.14) is easily seen to be

ψn = (L̃T + C̃ + R̃T ∗)nψ0. (2.15)

This is the time evolution of the QW that we are looking for.
Now we find the evolution of the QW in a Fourier transform space. Notice that

the translation operator T is represented as a multiplication operator by e−ik in
the Fourier transform space. Thus, the evolution in (2.15) has the representation
in Fourier transform space as follows:

ψ̂n(k) = U(k)nψ̂0(k), (2.16)

where

U(k) :=

e
−ik 0 0
0 1 0
0 0 eik


a11 a12 a13

a21 a22 a23

a31 a32 a33

. (2.17)

The probability density to find out the particle at a site x ∈ Z at time n is
simply

‖ψn(x)‖2 = |ψn(1;x)|2 + |ψn(2;x)|2 + |ψn(3;x)|2, (2.18)
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or it can also be given by∥∥∥∥∫ π

−π

1√
2π
e−ixkψ̂n(k)dk

∥∥∥∥2

=
1
2π

{∣∣∣∣∫ π

−π
e−ixkψ̂n(1; k)dk

∣∣∣∣2 +
∣∣∣∣∫ π

−π
e−ixkψ̂n(2; k)dk

∣∣∣∣2

+
∣∣∣∣∫ π

−π
e−ixkψ̂n(3; k)dk

∣∣∣∣2
}
. (2.19)

The matrix U(k) in (2.17) is unitary and it is diagonalized as

U(k) = S(k)


eiγ1(k) 0 0

0 eiγ2(k) 0

0 0 eiγ3(k)

S(k)∗

=: S(k)eiD(k)S(k)∗, (2.20)

where S(k) is a unitary matrix and

D(k) =


γ1(k) 0 0

0 γ2(k) 0

0 0 γ3(k)

. (2.21)

3. Limit Distributions and Their Moments

In this section we discuss the limit distribution of the walk. We focus on the weak
limit with a scaling by time n. We will find the characteristic function of the dis-
tribution. First, we derive the limit and then we give some examples.

3.1. Existence of weak limits

We start with some preparations. Let us define a self-adjoint matrixH(k) byH(k) =
S(k)D(k)S(k)∗. Then we can write

U(k) = eiH(k). (3.1)

Lemma 3.1. The eigenvalues of U(k) are simple for all k ∈ K except at most
finitely many points.

Proof. Define a function D : C × K → C by

D(λ, k) := det(U(k) − λ).

The characteristic equation D(λ, k) = 0 is written as

λ3 − a(k)λ2 + d a(k)λ− d = 0, (3.2)
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with

a(k) = e−ika11 + a22 + eika33,

d = detU(k) = detU.

Here we have used the unitarity of U(k) to get the coefficient of λ: that is, denoting
it by b(k) we have

b(k) = e−ik(a11a22 − a12a21) + eik(a22a33 − a23a32) + (a11a33 − a13a31)

= d a(k).

Notice that the coefficients are analytic as a function of the variable z := ik. From
the formula for the roots of polynomials of degree 3, it is easy to see that the
characteristic equation (3.2) has simple roots for all k ∈ K but at most finitely
many exceptional points.

Lemma 3.2. The eigenvalues and eigenvectors of U(k) are continuously differen-
tiable on K except at most finitely many points.

Proof. By Lemma 3.1 the eigenvalues of U(k) are simple for all k ∈ K with at
most finitely many exceptional points. Now the statements of the lemma can be
proven by using an implicit function theorem. See for example Refs. 7 and 14.

Theorem 3.3. The weak limit µ(U ;ψ0) of the distribution X
(U ;ψ0)
n /n exists and

there is a self-adjoint operator B ∈ B(Ĥ) such that∫ ∞

−∞
eitxµ(U ;ψ0)(dx) = 〈ψ̂0, e

itBψ̂0〉 bH. (3.3)

The operator B is given by

B =
∫ ⊕

K

B(k)dk, (3.4)

where

B(k) = S(k)

γ
′
1(k) 0 0

0 γ′2(k) 0

0 0 γ′3(k)

S(k)∗.

Proof. For the proof we adopt a method used in Ref. 10. For the reader’s conve-
nience we repeat here. Recall the random variables {X(U ;ψ0)

n }n≥0. We start with
the computation of the characteristic functions:

E(eitX
(U;ψ0)
n ) =

∑
x∈Z

eitx‖ψn(x)‖2

= 〈ψn, eit·ψn〉l2(Z,C3)

= 〈ψ̂n, êit·ψn〉 bH. (3.5)
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We see that êit·ψn(k) = ψ̂n(k + t) by understanding ψ̂n(k) as a periodic function
of period 2π on the real line. Therefore, we have

E(eitX
(U;ψ0)
n ) =

∫ π

−π
〈ψ̂n(k), ψ̂n(k + t)〉C3dk

=
∫ π

−π
〈ψ̂0(k), e−inH(k)einH(k+t)ψ̂0(k + t)〉C3dk, (3.6)

where we have used (2.16) and (3.1) in the second line. Let us compute the limit

lim
n→∞ E(eit/nX

(U;ψ0)
n )

= lim
n→∞

∫ π

−π
〈ψ̂0(k), e−inH(k)einH(k+t/n)ψ̂0(k + t/n)〉C3dk. (3.7)

Using the diagonal matrix D(k) in (2.21), we have

e−inH(k)einH(k+t/n)

= S(k)e−inD(k)S(k)∗S(k + t/n)einD(k+t/n)S(k + t/n)∗. (3.8)

By Lemma 3.2, we know that S(k) and D(k) are continuously differentiable on K

except at most finitely many points. First we assume that they are continuously
differentiable for all k ∈ K. We see that

S(k)∗S(k + t/n) = I + S(k)∗(S(k + t/n) − S(k))

= I + S(k)∗S′(k1)t/n, (3.9)

where k1 ∈ (k, k + t/n). Similarly,

e−inD(k)einD(k+t/n) = eiD
′(k2)t,

with k2 ∈ (k, k + t/n). Using these relations we have

e−inH(k)einH(k+t/n) = S(k)eiD
′(k2)tS(k)∗ +Rn(k),

where limn→∞Rn(k) = 0 uniformly in k ∈ K. Thus we get the limit in (3.7) as

lim
n→∞ E(eit/nX

(U;ψ0)
n ) =

∫ π

−π
〈ψ̂0(k), S(k)eiD

′(k)tS(k)∗ψ̂0(k)〉C3dk. (3.10)

Thus we have for the weak limit Z(U ;ψ0) of X(U ;ψ0)
n /n

E(eitZ
(U;ψ0)

) = 〈ψ̂0, e
itBψ̂0〉 bH, (3.11)

with B defined in (3.4).
Now suppose that the eigenvalues (and eigenvectors) have finite exceptional

points where they are not continuously differentiable. Let K′ be the set K excluding
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the finite exceptional points. By using the trick in (3.8) and (3.9), we see that

E(eit/nX
(U;ψ0)
n ) =

∫
K′
〈ψ̂0(k), e−inH(k)einH(k+t/n)ψ̂0(k + t/n)〉C3dk

=
∫

K′
〈ψ̂0(k), S(k)eiD

′(k2)tS(k + t/n)∗ψ̂0(k + t/n)〉C3dk

+
∫

K′
〈ψ̂0(k), S(k)einD(k)S(k)∗(S(k + t/n) − S(k))einD(k+t/n)

·S(k + t/n)∗ψ̂0(k + t/n)〉C3dk

=: I1(n) + I2(n),

where k2 ∈ (k, k+ t/n). Notice that limn→∞ S(k+ t/n) = S(k) and limn→∞ ψ̂0(k+
t/n) = ψ̂0(k). Thus by using dominated convergence theorem, we see that

lim
n→∞ I1(n) =

∫
K′
〈ψ̂0(k), S(k)eiD

′(k)tS(k)∗ψ̂0(k)〉C3dk,

lim
n→∞ I2(n) = 0.

This ends the proof.

Corollary 3.4. The moments of µ(U ;ψ0) are given by∫ ∞

−∞
xnµ(U ;ψ0)(dx) = 〈ψ̂0, B

nψ̂0〉 bH, n = 0, 1, . . . . (3.12)

3.2. Examples

3.2.1. Grover walk

We first consider the Grover walk discussed in Ref. 6. The unitary operator U is
given by

U =
1
3

−1 2 2
2 −1 2
2 2 −1

.
The eigenvalues γ1(k), γ2(k), and γ3(k) of H(k) are θ(k), 0, and −θ(k) with

cos θ(k) = −1
3
(2 + cos k).

The corresponding normalized eigenvectors are

|Φj(k)〉 =
√
ck(γj(k))



1
1 + ei(γj(k)+k)

1
1 + ei(γj(k))

1
1 + ei(γj(k)−k)


,

1650025-8
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where

ck(γ) = 2
{

1
1 + cos(γ − k)

+
1

1 + cos γ
+

1
1 + cos(γ + k)

}−1

.

Obviously, the eigenvalues and eigenvectors of H(k) are continuously differentiable
except at k = 0.

3.2.2. Three-state walk from two-state walk

Let

U2 :=

[
a b

c d

]
be any 2 × 2 unitary matrix. Let a22 ∈ C be any complex number with |a22| = 1.
Consider the unitary matrix

U :=

a 0 b

0 a22 0

c 0 d

. (3.13)

Let λ±(k) be the eigenvalues of the matrix

U2(k) :=

[
e−ik 0

0 eik

][
a b

c d

]
.

Then it is not hard to see that the eigenvalues of

U(k) :=

e
−ik 0 0

0 1 0

0 0 eik


a 0 b

0 a22 0

c 0 d


are λ±(k) and a22. In fact, if e±(k) = [a±1 (k) a±2 (k)]T are the eigenvectors of
U2(k) corresponding to the eigenvalues λ±(k), then the eigenvectors of U(k) cor-
responding to the eigenvalues λ±(k) are given by ẽ±(k) := [a±1 (k) 0 a±2 (k)]T .
And the eigenvector corresponding to the eigenvalue a22 is [0 1 0]T . The eigen-
values λ±(k) and eigenvectors e±(k) are continuously differentiable on K, see e.g.,
Ref. 10.

4. Localization

In the two examples of the previous section, the eigenvalues of the operator U(k)
contain a constant, not depending on k. This results in a term that does not depend
on the variable t in the characteristic function ϕ(U ;ψ0)(t) of µ(U ;ψ0). That is, the
measure µ(U ;ψ0) has a portion of Dirac measure at the origin. This phenomenon
has already been observed in other papers, see Refs. 3, 15, 18–20. In particular,
in Refs. 18 and 20, the authors investigated the deformations of the Grover walk
persisting to the stability of the point spectrum.
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4.1. Localization

In this subsection, we thoroughly investigate the localization of the three-state
QWs. Before going further, we remark that in the literature the localization is
sometimes understood in the following sense3,6,15,19:

lim
n→∞ P(X(U,ψ0)

n = x) > 0 for some x ∈ Z. (4.1)

But, since we consider the scaled limit, the localization, when it occurs, is observed
only as a Dirac measure at the origin. Moreover, as we will see later, localization
depends not only on the unitary matrix U that generates the QW but also on the
initial conditions. Therefore, we make a precise definition of localization as follows.

Definition 4.1. Let us consider the QW driven by a unitary matrix U . We say
that the QW has a strong localization if there is an initial state ψ0 such that the
relation (4.1) holds. We say that it has a weak localization if there is an initial state
ψ0 such that the weak limit µ(U ;ψ0) of the distribution X(U ;ψ0)

n /n has a portion of
Dirac measure at the origin. That is, we have a decomposition:

µ(U ;ψ0) = αδ0 + (1 − α)µ1 (4.2)

with α > 0.

Remark 4.2. As mentioned above, since we are considering the localization
through scaled limit, by localization in this paper we always mean a weak local-
ization and we omit the prefix “weak” for simplicity. However, in Theorem 4.10, it
will be seen that the two concepts of localization are equivalent.

As mentioned before the existence of constant eigenvalue for U(k) is closely
related to the localization. Before investigating it we study when it has a constant
eigenvalue.

Lemma 4.3. The unitary operator U(k) has an eigenvalue λ0 not depending on k
if and only if λ0 satisfies the following two equations simultaneously.

a11λ0 = d a33,

λ3
0 − a22λ

2
0 + d a22λ0 − d = 0.

Proof. We can rewrite the characteristic equation (3.2) as follows:

e−ik(d a33λ− a11λ
2) + eik(d a11λ− a33λ

2) + (λ3 − a22λ
2 + d a22λ− d) = 0.

(4.3)

By the linear independence of the functions {e−ik, eik, 1} we see that Eq. (4.3) has
a constant solution λ0 if and only if it satisfies the equations in the statement of
the lemma and d a11λ − a33λ

2 = 0, but the last equation is equivalent to d a33λ−
a11λ

2 = 0, and we are done.

The following proposition gives an equivalent condition to Lemma 4.3 in terms
of matrix components of U , which is easier to check when the localization occurs.

1650025-10
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Proposition 4.4. The unitary matrix U(k) has a constant eigenvalue λ0 if and
only if the following equations are satisfied :

a11λ0 = d a33,

a33
2a12a21 = a2

11a23 a32.

Proof. Suppose that λ0 is a constant eigenvalue of U(k). We may assume a11 �=
0 �= a33. By Lemma 4.3 λ0 = d a33/a11 solves the second equation in Lemma 4.3:

d3

(
a33

a11

)3

− a22d
2

(
a33

a11

)2

+ d2a22
a33

a11
− d = 0.

Multiplying by a3
11 and factorizing we get

d a33
2(d a33 − a22a11) + a2

11(d a22 a33 − a11) = 0.

Using the relations d a33 − a22a11 = −a12a21 and d a22 a33 − a11 = d a23 a32 (which
hold by the unitarity of U) we get the second relation in the statement. Conversely,
if the two equations in the statement are satisfied, by reversing the argument, we
see that λ0 = d a33/a11 solves the equations in Lemma 4.3.

Let us turn our attention to the localization of the three-state QW. It is conve-
nient to rewrite the moment generating operator in (3.3) in the following form:

eitB = S(k)(eitγ
′
1(k)P1 + eitγ

′
2(k)P2 + eitγ

′
3(k)P3)S(k)∗, (4.4)

where Pi, i = 1, 2, 3, are mutually commuting projections:

P1 =

1 0 0
0 0 0
0 0 0

, P2 =

0 0 0
0 1 0
0 0 0

, P3 =

0 0 0
0 0 0
0 0 1

.
The following is a simple extension of Riemann–Lebesgue lemma.

Lemma 4.5. Suppose that u(x) is differentiable and increasing (or decreasing) on
an interval (a, b) and g(x) is integrable on (a, b). Then,

lim
t→∞

∫ b

a

eitu(x)g(x)dx = 0.

Proof. Take a change of variable y = u(x) and use Riemann–Lebesgue lemma.

Theorem 4.6. The three-state QW driven by a unitary matrix U has a localization
if and only if the matrix U(k) has a constant eigenvalue.

Proof. Suppose that the three-state QW has a localization. Then µ(U ;ψ0) has a
decomposition as in (4.2) with α > 0. By (3.3) and (4.4) we have

ϕ(U ;ψ0)(t) = 〈ψ̂0(k), S(k)(eitγ
′
1(k)P1 + eitγ

′
2(k)P2 + eitγ

′
3(k)P3)S(k)∗ψ̂0(k)〉 bH.

(4.5)
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Since the limit measure has a portion of Dirac delta measure at the origin,
from the formula (4.5) we can see that at least one of γi(k)’s must be constant
on a subinterval of K. In fact, suppose the converse. Then on the intervals where
γ′i(k), i = 1, 2, 3, are constant (which are nonzero if the case occurs in any way),
the R.H.S. of (4.5) results in an oscillating function of t. On the remaining region,
γ′i(k)’s are increasing or decreasing and in the limit t → ∞ they converge to 0 by
Lemma 4.5. Thus there is no term corresponding to the Dirac measure at the origin.
Therefore there must be a subinterval I ⊂ [0, 2π] on which one of γ′i(k)’s, say γ′2(k),
is zero, that is, γ2(k) is a constant γ2 on I. Notice that the functions {e−ik, 1, eik},
considered to be defined on I, are linearly independent. Thus by the argument
used in the proof of Lemma 4.3 γ2 solves the two equations in the statement of
Lemma 4.3. But this in fact shows that γ2 is a constant eigenvalue of U(k) by that
lemma.

Now suppose that U(k) has a constant eigenvalue, say γ2 := γ2(k) is a constant.
Let us define the weights of the initial state to the direction of the eigenvectors by

αi := 〈ψ̂0(k), S(k)PiS(k)∗ψ̂0(k)〉 bH, i = 1, 2, 3. (4.6)

Notice that αi ≥ 0 and
∑3

i=1 αi = 1. Let ψ0 be any initial state such that α2 > 0, i.e.
the weight of ψ0 to the direction of the eigenvector corresponding to the eigenvalue
γ2 is positive. Let ϕ(t) := ϕ(U ;ψ0)(t) be the characteristic function of the distribution
µ(U ;ψ0). Since γ′2(k) = 0, by (3.3) and (4.4) we have a decomposition:

ϕ(t) = α2 + (1 − α2)ϕ1(t), (4.7)

where

ϕ1(t) =
1

1 − α2
〈ψ̂0(k), S(k)(eitγ

′
1(k)P1 + eitγ

′
3(k)P3)S(k)∗ψ̂0(k)〉 bH. (4.8)

(In the case α2 = 1, we have ϕ(t) = 1 and the measure µ(U ;ψ0) is just a Dirac
measure δ0.) Notice that the constant 1 is a characteristic function of Dirac measure
δ0 and it is easy to see that ϕ1(t) is a characteristic function of a probability
measure, say µ1. Therefore we obtained a decomposition

µ(U ;ψ0) = α2δ0 + (1 − α2)µ1. (4.9)

We have shown that the QW has a localization and the proof is complete.

Example 4.7. Generalizing the Grover walk, Machida considered the following
parametrized family of unitaries for three-state quantum walk15:

U = U(θ) :=



−1 + c

2
s√
2

1 − c

2
s√
2

c
s√
2

1 − c

2
s√
2

−1 + c

2


, (4.10)
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where c := cos θ and s := sin θ for θ ∈ [0, 2π). Machida has shown that for all value
θ ∈ [0, 2π), the unitary U(k) has a constant eigenvalue 1. He has also shown that
for the value θ0 = sin−1(− 2

√
2

3 ) + 2π the 3-state quantum walk generated by U(θ0)
with initial condition 1/

√
3 [1, 1, 1]T does not have a localization. One can show

that in this case α2 = 0 in (4.6).

Example 4.8. (i) The two examples in Sec. 3.2 satisfy the conditions in Propo-
sition 4.4. Hence by Theorem 4.6 the localizations occur in the examples. In fact,
we can easily find initial conditions starting at the origin such that their weights
to the direction of the constant eigenvector are positive, for instance we take
ψ0 = [0, 1, 0]T .

(ii) Consider a unitary matrix

U =

0 1 0
1 0 0
0 0 1

.
In this case

U(k) =

0 e−ik 0

1 0 0

0 0 eik


and the eigenvalues of U(k) are eik, e−ik/2 and −e−ik/2. Thus by Theorem 4.6 the
QW generated by U has no localization. See Fig. 1.

−100 −50 0 50 100
position

0.05

0.10

0.15

0.20

0.25

0.30

0.35

probability

(a)

Fig. 1. (a) Grover walk, (b) three-state walk from two-state Hadamard walk, (c) Ex. 4.8 (ii).
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0.7

probability
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Fig. 1. (Continued)

4.2. Localization and the eigenvectors

In the previous subsection we discussed localization in the viewpoint of eigenvalues.
We observed that a localization occurs if and only if the matrix U(k) has a constant
eigenvalue. In this subsection we would like to see it in the viewpoint of eigenvectors.
Let us denote the unitary operation for the QW given in (2.14) by Ũ . That is, the
n-step walk is given by

ψn = Ũnψ0. (4.11)

We notice that Ũ is the inverse image of the unitary U(k) under the inverse Fourier
transform. We say that a vector ψ = (ψ(x))x∈Z ∈ l2(Z) ⊗ C3 is local or localized
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if ψ(x) = 0 except for finitely many x ∈ Z. The following is a main result of this
subsection.

Theorem 4.9. A three-state QW driven by the unitary matrix U has a localization
if and only if the unitary Ũ has a localized eigenvector.

Proof. Sufficiency is easy to show. Suppose that Ũ has a localized eigenvector.
Let us run a QW with an initial state of local eigenvector. Then for all n, since the
walk never diffuse, the limit distribution for ψn/n is just a Dirac measure δ0.

We now show the necessity. Suppose that there occurs a localization in the
walk. By Theorem 4.6 the matrix U(k) has a constant eigenvalue which is given
by λ0 = d a33/a11 by Proposition 4.4. Let ξ̂(k) := [ξ̂1(k), ξ̂2(k), ξ̂3(k)]T be the
corresponding eigenvector. We solve the eigenvector equation:

(U(k) − λ0)ξ̂(k) = 0.

After some computation, by utilizing the translation invariance of the walk, we can
see that the (un-normalized) eigenvector is an element of

Hloc := span{ξ̂m ∈ Ĥ : m ∈ Z}. (4.12)

Here ξ̂m(k) := eimk ξ̂0(k) and ξ̂0(k) has the form:

ξ̂0(k) = e−ikλ0

−a12

a11

0

 +

φ1

φ2

φ3

 + eikλ0

 0
a33

−a32

, (4.13)

where φ1

φ2

φ3

 =


a33a12 − a13a32

−λ2
0 − a11a33 + a31a13

a11a32 − a31a12

 = −


d a21

λ2
0 + d a22

d a23

.
The inverse Fourier transform ξ0 of ξ̂0 is given by

ξ0 = ([ξ1(x), ξ2(x), ξ3(x)]T )x∈Z, (4.14)

with

ξ1(x) = δ−1(x)(−λ0a12) + δ0(x)φ1,

ξ2(x) = δ−1(x)(λ0a11) + δ0(x)φ2 + δ1(x)(λ0a33), (4.15)

ξ3(x) = δ0(x)φ3 + δ1(x)(−λ0a32). (4.16)

Now we see that ξ0 (and also all the inverse Fourier transforms of ξ̂m’s) is a localized
vector. By taking an initial state from the space Hloc, we would get a localization.
The proof is complete.

In Fig. 2, the evolution of the walk operated on a localized eigenvector is depicted
graphically.

1650025-15



2nd Reading

November 21, 2016 16:22 WSPC/S0219-0257 102-IDAQPRT 1650025

C. K. Ko, E. Segawa & H. J. Yoo

Fig. 2. The vectors [1, 0, 0]T and [0, 0, 1]T are depicted as left and right arrows, respectively. The
self loop corresponds to [0, 1, 0]T .

Combining Theorems 4.6 and 4.9 we can show that the two concepts of local-
ization, strong and weak, are equivalent.

Theorem 4.10. In the three-state QW driven by a unitary matrix U, the weak
localization and the strong localization are equivalent.

Proof. Suppose that the weak localization occurs. By Theorem 4.9 the operator
Ũ has a localized eigenvector. If we take it as an initial state for the walk, then it
is obvious that the strong localization occurs. On the other hand, suppose that the
strong localization occurs with an initial condition ψ0. Then there is a j ∈ Z such
that limn→∞ P (X(U ;ψ0)

n = j) = c > 0. It is obvious to see that the limit measure
µ(U ;ψ0) has a portion of Dirac measure at the origin with weight at least c, which
says that the weak localization holds.

Example 4.7 and the next example show that when we say localization it is
indispensable to mention the initial conditions.

Example 4.11. Consider the following unitary matrix for a 3-state QW:

U :=

0 0 1
0 1 0
1 0 0

. (4.17)

The matrix U(k) has constant eigenvalues ±1. Let us consider the initial condition
ψ0 := [α, β, γ]T with all nonzero components starting at the origin. The walk does
not escape the region {−1, 0, 1}. Thus we get µ(U ;ψ0) = δ0 and the weak localization
holds. But, there is no point x ∈ Z such that limn→∞ P(X(U ;ψ0)

n = x) > 0. However,
let us consider the other initial condition

ξ0 := (ξ0(x))x∈Z,

with

ξ0(x) =
1√
5
(δ−1(x)[1, 0, 0]T + δ0(x)[1, 1, 1]T + δ1(x)[0, 0, 1]T ).

We can easily check that ξ0 is an eigenvector of Ũ corresponding to the eigenvalue 1
and so limn→∞ P (X(U ;ξ0)

n = x) > 0 for x = −1, 0, 1. That is, the strong localization
holds.
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4.3. Density functions

In this subsection we characterize the properties of the second term in (4.7), i.e.
we find distributions that have characteristic functions ϕ1(t). It turns out that it
is possible to get the density functions but it looks rather complicated, in some
special cases we get a nice density function. Before going into typical examples we
draw some general notions. In this subsection we assume that the walk has a local-
ization at the origin, equivalently, we assume the U(k) has a constant eigenvalue.
By Proposition 4.4 we have |a11| = |a33| =: r.

Let U(k) has eigenvalues eiγ1(k), eiγ3(k), and a constant λ0 = d a33/a11 =:
ei(δ−2σ+), where we have put δ := arg d and σ+ := 1

2 (arg a11 + arg a33). From the
relation d = detU(k) = ei(γ1(k)+δ−2σ++γ3(k)) we get

γ3(k) = 2σ+ − γ1(k). (4.18)

Now let us denote σ− := 1
2 (arg a11 − arg a33). From the relation Tr(U(k)) = eiγ1(k)+

ei(δ−2σ+) + eiγ3(k) = a11e
−ik + a22 + a33e

ik, using (4.18) we get the relation

cos(γ1(k) − σ+) = r cos(k − σ−) +
1
2
e−iσ+(a22 − ei(δ−2σ+)). (4.19)

By differentiating both sides w.r.t. k we get the relation

γ′1(k) =
r sin(k − σ−)

sin(γ1(k) − σ+)
. (4.20)

For convenience, which will be shown later, we take a random initial condition
in the following way. Let Ω := {1, 2, 3} and Q be the distribution on Ω with Q(ω) =
1/3, ω = 1, 2, 3. We denote the random initial condition by ψ

(ω)
0 with ψ

(1)
0 = e1,

ψ
(2)
0 = e2, ψ

(3)
0 = e3, where e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T . We call

this a “mixed initial state”.
We first consider the example of Sec. 3.2.2; a 3-state walk coming from 2-state

walk. Notice that in this example the localization occurs.

Proposition 4.12. In the example of Sec. 3.2.2, let us take a random initial con-
dition mentioned above. Then the distribution corresponding to the characteristic
function ϕ1(t) in (4.7) has a density of the form:

fK(x; r) :=
√

1 − r2

π(1 − x2)
√
r2 − x2

1[−r,r](x).

Remark 4.13. We notice that the term
√

1−r2
π(1−x2)

√
r2−x2 is a typical factor in the

density of two-state QWs.4,11,12

Proof. (of Proposition 4.12) The constant eigenvalue λ0 is equal to a22. Therefore
the last term in (4.19) disappears resulting in:

cos(γ1(k) − σ+) = r cos(k − σ−). (4.21)
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Let ϕ(ω)(t) := ϕ(U ;ψ
(ω)
0 )(t) be the characteristic function of the distribution

µ(U ;ψ
(ω)
0 ). Taking the expectation w.r.t. Q we get

EQ[ϕ(ω)(t)] = EQ[〈ψ̂(ω)
0 (k), eitBψ̂(ω)

0 (k)〉 bH]

=
1
6π

∫ 2π

0

Tr(eitBS∗(k)(|e1〉〈e1| + |e2〉〈e2| + |e3〉〈e3|)S(k))dk

=
1
6π

∫ 2π

0

(eitγ
′
1(k) + 1 + eitγ

′
3)dk

=
1
3

+
1
6π

∫ 2π

0

(eitγ
′
1(k) + e−itγ

′
1(k))dk, (4.22)

where we have used the relation (4.18) in the last line. Now let us put

x = x(k) := γ′1(k) =
r sin(k − σ−)

sin(γ1(k) − σ+)
. (4.23)

From (4.21) and (4.23) we have

cos2(γ1(k) − σ+) =
r2 − x2

1 − x2
. (4.24)

By direct computation we can see that

x′(k) =
(1 − r2) cos(γ1(k) − σ+)
(1 − cos2(γ1(k) − σ+))3/2

. (4.25)

Putting (4.23) into (4.22) and using (4.24)–(4.25) we finally get

EQ[ϕ(ω)(t)] =
1
3

+
2
3

∫ r

−r
eitx

√
1 − r2

π(1 − x2)
√
r2 − x2

dx. (4.26)

This completes the proof.

We next consider another example. Let us rewrite (4.19) as

cos(γ1(k) − σ+) = r cos(k − σ−) + η, (4.27)

by denoting η = 1
2e

−iσ+(a22 − ei(δ−2σ+)). Notice that we have η = 0 if and only if
the generating unitary matrix is of the form in (3.13).

Proposition 4.14. Suppose that the equality r = 1−|η| holds. By taking a random
initial condition described in this subsection, the distribution corresponding to the
characteristic function ϕ1(t) in (4.7) has a density of the form:

fK(x;
√
r) =

√
1 − r

π(1 − x2)
√
r − x2

1[−√
r,
√
r](x).

Proof. The proof parallels that of Proposition 4.12. The key point here is that
under the condition given in the proposition we get a factorization and many
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computation reduces to simple forms. For example, if η < 0 and we have r2 =
(1 + η)2, then we can compute to get

x2 =
2η + 1 − cos(γ1(k) − σ+)

1 − cos(γ1(k) − σ+)
.

Now we follow the same lines done in the proof of Proposition 4.12 to finish the
proof.

Remark 4.15. (i) Štefaňák et al.19 considered the following parametrized coin
(unitary) operators which generalize the Grover walk:

U(ρ) =


−ρ2 ρ

√
2 − 2ρ2 1 − ρ2

ρ
√

2 − 2ρ2 2ρ2 − 1 ρ
√

2 − 2ρ2

1 − ρ2 ρ
√

2 − 2ρ2 −ρ2

, ρ ∈ (0, 1).

It is easy to check that this class of operators fall into the category that satisfies
the conditions of Proposition 4.14.

(ii) Machida has also obtained similar continuous measure for the three-state QW
generated by a different class of unitary matrices given in Example 4.7.15

It is an interesting open question to see whether in the localization setting (see
Proposition 4.4) the absolutely continuous part always has an fK-type density or
not.
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20. M. Štefaňák, I. Bezděková, I. Jex and S. M. Barnett, Stability of point spectrum for

three-state quantum walks on a line, Quantum Infor. Comput. 14 (2014) 1213–1226.
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